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Translator's Foreword

Those reading these lines are
hereby summoned to raise their
children to a good command of

Elementary Geometry, to be judged
by the rigorous standards of the
ancient Greekmathematicians.

A magic spell

Mathematics is an ancient culture. It ispassedon by each generation to

the next. What we now call Elementary Geometry was createdby Greeks

some 2300 years ago and nurtured by them with pride for about a millen-

nium. Then, for another millennium, Arabs were preservingGeometry and
transcribingit to the language of Algebra that they, invented. The effort

bore fruit in the Modern Age, when exact sciencesemergedthrough the

work of Frenchman Rene Descartes, Englishman Isaac Newton, German

Carl Friedrich Gauss, and their contemporariesand followers.

Here is one reason. On the declineof-the 19th century, a Scottish-pro-
fessor showedto his classthat the mathematical equations, he introduced
to explainelectricity experiments, admit wave-like solutions. Afterwards
a German engineer Heinrich Hertz,who happened to be a student in that
class,managed to generate and register the waves. A century later we find
that almost every thing we use: GPS, TV, ceil-phones, computers, and
everything we manufacture, buy, or learn using them, descendsfrom the

mathematical discovery made by James Clerk Maxwell.

I gave the above speech at a graduation ceremony at the University of
California Berkeley,addressingthe classof graduating math majors -- and
then I cast a spell upon them.

Soon there came the realization that without a Magic Wand the spell
won't work: I did not manage to find any textbook in English that I could
recommend to a young person willing to master Elementary Geometry.
This is when the thought of Kiselev's came to mind.

Andrei Petrovich Kiselev (pronounced And-\177rei Pet-\177ro-vich Ki-se\177lyov)

left a unique legacy to mathematics education.Bornin 1852in a provin-
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cial Russian town Mzensk, he graduatedin 1875from the Department of

Mathematics and Physics of St.-Petersburg University to begin a long ca-
reer as a math and science teacher and author. His schoo14eveltextbooks
\"A Systematic Course of Arithmetic\" \177[9], \"Elementary Algebra\" [10], and
\"Elementary Geometry\" (Book I \"Planimetry\", Book II \"Stereomerry\") [3]

were first published in 1884, 1888and 1892respectively, and soon gained
a leading position in the Russian mathematics education. Revised and

published more than a hundred times altogether, the booksretainedtheir
leadership over many decades both in Tsarist Russia, and after the Revolu-
tion of 1917, under the quite different cultural circumstances of the Soviet

epoch. A few years prior to Kiselev'sdeathin 1940,his books were officially

given the status of stable, i.e. main and only textbooks to be used in all
schoolsto teach all teenagersin the totalitarian state with a 200-million
population.Thebooksheldthis status until 1955 (and \"Stereomerry\" even
until 1974) when they got replaced in this capacity by lesssuccessful clones

written by more Soviet authors. Yet \"Planimetry\" remained the favorite
under-the-desk choiceof many teachers and a must for honors geometrystu-
dents.In the last decade, Kiselev's \"Geometry,\" which has long becomea
rarity, was reprinted by several major publishing housesin Moscowand St.-

Petersburg in both versions: for teachers[6, 8] as an authentic pedagogical
heritage, and for students [5, 7\177as a textbook tailored to fit the currently
active school curricula. In the .post-Sovieteducational market, Kiselev's

\"Geometry\" continues to compete successfullywith its own grandchildren.

What is the secretof such ageless vigor? There are several.
Kiselevhimself formulated the following three key virtues of good text-

books: precision, simplicity, conciseness.And competence in the subject-
for we must now add this fourth criterion, which could have been 'taken for
granted a century ago.

Acquaintance with programs and principles of math education being
developed by European mathematicians was another of Kiselev's assets. In
his preface to the first edition of \"Elementary Geometry,\" in addition to

domestic and translated textbooks, Kiselevquotesten geometry courses in

French and German published in the previous decade.

Yet another vital elixir that prolongsthe life of Kiselev's work was the
continuous effort of the author himself and of the editorsof later reprints to

improve and update the books,and to accommodate the teachers' requests,
curriculum fluctuations and pressuresof the 20th century classroom.

Last but not least, deepand beautiful geometry is the most efficient
preservative. Compared to the first textbook in this subject: the \"Ele-
ments\" [1], which was written by Euclid of Alexandria in the 3rd century
B.C., and whose spirit and structure are so faithfully represented in Kise-
lev's \"Geometry,\" the latter is quite young.

Elementary geometry occupiesa singular place in secondary education.
The acquiring of superb reasoning skills is one of thosebenefits from study-

\177The numbers in brackets refer to the bibl'iography on p. 235.
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ing geometry whose role reachesfar beyond mathematics education per se.
Another one is the unlimited opportunity for nurturing creative thinking

(thanks to the astonishingly broad difficulty range of elementary geome-
try problems that have been accumulated over the decades).Finelearning

habits of those who dared to face the challenge remain always at work for
them. A lack thereof in those who missed it becomes hard to compensate by
studying anything else. Above all, elementary geometry conveysthe essence
and power of the theoretical method in its purest,yet intuitively transparent

and aesthetically appealing, form. Suchhigh expectations seem to depend
however on the appropriateframework: a textbook, a teacher, a culture.

In Russia, the adequate framework emerged apparently in the mid-
thirties, with Kiselev's books as the key component. After the 2nd World
War, countries of Eastern Europe and the Peoples Republic of China,
adapted to their classroomsmath textbooks based on Soviet programs.
Thus, one way or another, Kiselev's \"Geometry\" has served several gener-
ations of students and teachers in a substantial portion of the planet. It is
the time to make the book available to the English reader.

\"Plantmerry,\" targeting the age group of current 7-9th-graders,pro-
vides a concise yet crystal-clear presentation of elementary plane geome-

try, in all its aspectswhich usually appear in modern high-school geome-
try programs. The reader's mathematical maturity is gently advanced by
commentaries on the nature of mathematical reasoning distributedwisely

throughout the book. Student's competence is reinforced by generously

supplied exercises of varying degree of challenge. Among them, s\177rai#ht-

edge and compass constructions play a prominent role,because,according

to the author, they are essential for animating the subject and cultivating
students' taste. Thebookis marked with the general sense of measure (in
both selections\177and omissions), and non-cryptic, unambiguous language.
This makesit equally suitable for independent study, teachers' professional
development, or a regular s\177hool classroo-rn. The book was indeed designed
and tuned to b\177 stable.

Hopefully the present adaptation retains the virtues of the original. I
tried to follow it pretty closely, alternating between several available ver-

sions [3, 4, 5, 7, 8] when they disagreed. Yet authenticity of translation
was not the goal, and I felt free to deviate from the source when the need
occurred.

The most notable change is the significant extension and rearrangement
of exercise sections to comply with the US tradition of making textbook

editions self-contained (in Russia separate problembooks are in fashion).

Also, I added or redesigneda few sections to represent material which
found its way to geometry curricula rather recently.

Finally, having removed descriptions of several obsoletedrafting devices

(such as a pantograph), I would like to share with the reader the following

observation.

In that remote, Kiselevian past, when Elementary Geometry was the
most reliable ally of every engineer, the straightedge and compasswere the
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main items in his or her drafting toolbox. The craft of blueprim draft-
ing has long gone thanks to the advance of computers. Consequently, all

267 diagrams in the present edition are producedwith the aid of graphing
software Xfig. Still, Elementary Geometry is manifested in their designin

multiple ways. Obviously, it is inherent in all modern technologiesthrough

the \"custody chain\": Euclid - Descartes- Newton - Maxwell. Plausibly, it

awakened the innovative powers of the many scientists and engineers who
invented and created computers2 Possibly, it was among the skills of the'

authors of Xfig. Yet, symbolicallyenough, the most reliable way of draw-
ing a diagram on the computer screenis to useelectronicsurrogates of the

straightedge and compass and follow literally the prescriptions given in the
present book,often in the very same theorem that the diagram illustrates.
This brings us back to Euclid of Alexandria, who was the first to describe
the theorem, and to the task of passing on his culture.

I believethat the bookyou are holding in your hands gives everyone a

fair chance to share in the \"custody.\" This is my Magic Wand, and now I

can cast my spell.

Alexander Givental

Department of Mathematics
University of California Berkeley

April, 2006
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Introduction

1. Geometricfigures.The part of space occupied by a physical
object is called a geometric solid.

A geometric solid is separatedfromthe surrounding space by a
surface.

A part of the surfaceis separated from an adjacent part by a
line.

A part of the line is separated from an adjacent part by a point.
The geometricsolid,surface, line and point do not exist sepa-

rately. However by way of abstraction we can consider a surface
independently of the geometric solid, a line -- independentlyof the
surface,and the point -- independently of the line. In doing so we

should think of a surface as having .no thickness, a line \337 as having

neither thickness nor width, and a point-- as having no length, no
width, and no thickness.

A set of points, lines, surfaces, or_ solids positioned in a certain
way in space is generally called a geometric.figure. Geometric fig-
ures can movethroughspacewithout change. Two geometric figures
are called congruent, if by moving one of the figures it is possi-
bleto superimpose it onto the other so that the two figures become

identified with each other in all their parts.
2.Geometry.A theory studying properties of geometric figures

is calledgeometry,which translates from Greek as land-measuring.
This name was given to the theory because the main purpose of
geometry in antiquity was to measuredistancesand areas on the
Earth's surface.

First concepts of geometryas well as their basic properties, are
introduced as idealizationsofthe corresponding common notions and

everyday experiences.

3. The plane. Themost familiar of all surfaces is the flat sur-

face, or the plane. The idea of the plane is conveyed by a window
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pane, or the water surface in a quietpond.
We note the following property of the plane: Onecansuperimpose

a plane on itself or any other plane in a way that takes one given
point to any other givenpoint, and this can also be done after flipping
the planeupsidedown.

4. The straight line. The most simple line is the straight
line. The image of a' thin thread stretched tight or a rky of light

emitted through a small hole give an ideaofwhat a straight line is.
The following fundamental property of the straight line agreeswell

with these images:

Fo\177 every two points in space, there is a straight line p.assing

through them, and such a line is unique.

It follows from this property that:

If two straight lines are aligned with each other in such a way that
two points of one line coincidewith two points of the other, then the
lines coincidein all their other points as well (because otherwise we
would have two distinct straight lines passing through the sametwo

points, which is impossible).

For the same reason, two straight lines can intersect at most at
one point.

A straight line can lie in a plane. The following holds true:

If a straight line passes through two points of a plane, then all
points of this line liein this plane.

A a B C b D E

Figure 1 Figure 2 Figure 3

5. The unbounded straight line. Ray. Segment. Thinking

of a straight line asextendedindefinitely in both directions, one calls
it an infinite (or unbounded) straight line.

A straight line is usually denoted by two uppercase letters mark-
ing any two points on it. Onesays \"the line AB\" or \"BA\" (Figure

I).

A part of the straight line boundedon both sidesis called a

straight segment. It is usually denoted by two letters marking its

endpoints (the segment CD, Figure2). Sometimes a straight line

'or a segment is denotedby one (lowercase) letter; one may say \"the
straight linea, the segment b.\"
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Us.ually instead of \"unboundedstraight line\" and \"straight seg-

ment\" we will simply say line and segment respectively.

Sometimes a straight line is consideredwhich terminates in one

direction only, for instance at the endpointE (Figure 3). Such a

straight line is called a ray (or half-line) drawn from

6. Congruent and non-congruent segments. Two segments

are congruent if they can be laid one onto'the other so that their

endpoints coincide. Suppose for example that we put the segment
AB onto the segmentCD (Figure 4) by placing the point A at the
point C and aligning the ray AB with the ray CD. If, as a result

of this, the points B and D merge,then the segments AB and CD

are congruent. Otherwise they are not congruent, and the one which
makes a part of the otheris considered smaller.

A B C D

Figure 4

To mark on a linea segment congruent to a given segment, one
uses the compass,a drafting device which we assume familiar to the
reader.

7 \177.Sum of segments. The sum of severalgiven segments(A/\177,

CD, EF, Figure 5) is a segment which is obtainedas follows. On

a line, pick any point M and starting fromit marka segm_ent MJV

congruent to A/\177, then mark the segments ]VP congruent to CD,
and P(\177 congruent to EF, both going in the samedirectionasMN.
Then the segment M(\177 will be the sum of the segments A/\177, CD and

EF (which are called summands of this sum). Onecan similarly

obtain the sum of any number of segments.

A B C D E F

I. [ I 3 2 L

M N p Q

Figure 5

The sum of segmentshas the same properties as the sum of num-
bers. In particularit doesnotdepend on the order of .the summantis
(the commutativity law) and remains unchanged when some of the
summantisare replacedwith their sum (the associativity law). For



4 Introduction

instance:

AB + CD + EF = AB + EF + CD= EF + CD + AB = ...

and

AB + CD + EF = AB + (CD+ EF)= CD + (AB + EF) = ....
8.Operations with segments. The concept of addition of

segmentsgives rise to the concept of subtraction of segments, and
multiplicationand division of segments by a whole number. For
example,the difference of AB and CD (if AB > CD) is a segment

whose sum with CD is congruent to AB; the product of the segment

AB with the number 3 is the sum of three segments each congruent
to AB; the quotient of the segment AB by the number 3 is a third

part of AB.

If given segments are measuredby certain linear units (for in-
stance, centimeters), and their lengths are expressed by the corre-
sponding numbers, then the length of the sum of the segments is
expressedby the sum of the,numbers measuring these segments, the
length of the difference is expressed by the differenceof the 'numbers,
etc.

9.Thecircle.If, setting the compass to an arbitrary step and,
placingitspinlegat some point O of the plane (Figure 6), webeginto
turn the compass around this point, then the otherlegequipped with

a-pencil touching the plane will describe on the planea continuous

curved line all of-whose points are the samedistanceaway from O.

This curved line is called a circle, and the point O -- its center.
A segment (OA, OB, OC in Figure 6) connectingthe center with a

point of the circle is calleda radius.All radii of the same circle are
congruent to eachother.

Circlesdescribedby the compass set to the same radius are con-
gruent because by placing their centers at .the samepoint onewill

identify such circles with each other at all theirpoints.
A line (MN, Figure 6) intersecting the circle at any two points

is called a secant.

A segment (EF) bothofwhose endpoints lie on the circle is called
a chord.

A chord (AD) passing through the center is calleda diameter.
A diameter is the sum of two radii, and.thereforealldiameters of the

same circle are congruent to eachother.
-\" A part of a circle contained between any two points (for example,
EmF) is called an arc.
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The chord connecting the endpoints of an arc is s\177id to subtend

this arc.

An arc is sometimes denotedby the sign \177-\177; for instance, one

writes: EmF.

The p\177rt of the plane bounded by a circle is calleda disk?
The part of a disk contained between two r\177dii (the shaded part

COB in Figure 6) is calleda sector,\177nd the part of the disk cut off

by a secant (the part EmF) is calleda disksegment.
\275

D A

\177 N

Figure 6

10. Congruent and non-congruent arcs. Two arcs of the

same circle (or of two congruent ci\177rcles) are congruent if they can
be aligned so that their endpoints coincide. Indeed, supposethat
we align the \177rc AB (Figure 7) with the arc CD by identifying the

point A with the point C and directingthe arc AB along the \177rc

CD. If, as e\177result of this, the endpoints B and D coincide,then efil

the intermedi&te points of these arcs will coincide \177s well, since they

are the same distance e\177way from the center, \177nd therefore AB-CD.

But if B and D do not coincide, then the arcs are not congruent, and
the onewhich is a pe\177rt of the other is considered smaller.

11. Sum of arcs. The sum of several given arcs of the same
radius is defined as an arc of that same r\177dius which is composed

from p\177rts congruent respectively to the given arcs. Thus, pick an

arbitre\177ry point M (Figure 7) of the circle\177nd mark the part MN

\177'Often the word \"circle\" is used insteadof \"disk.\" However one should avoid
doing this since the use of the same term for different concepts may lead to
mistakes.



6 Introduction

congruentto AB. Next, moving in the same direction along the
circle,markthe part _IV/\177 congruent to CD. Then the arc MP will

be the sum of the arcs AB and CD.
N

M p

D

B

Figure 7

Adding arcs of the same'radiusonemay encounter the situation
when the sum of the arcsdoesnot fit in the circle and one of the arcs
partiallycoversanother.In thiscasethe sum will be an arc greater
than the whole circle. ]For example, adding the arcs Arab and CnD
(Figure 8) we obtain the arc consisting of the wholecircleand the

arc AD \177

m

c

Figure 8

\337Similarly to addition of line segments, addition of arcsobeysthe
commutativity and associativity laws.

From the concept of addition of arcs one derives the concepts

of subtraction of arcs, and multiplicationand division of arcs by'a.

whole number the same way as it was done for line segments.
12. Divisionsof geometry.The subject of geometry can be

divided into two parts: plane geometry, or planimetry, and solid
geometry, orstereomerry.Planimetry studies properties of those
geometric figures all of whoseelementsfit the.same plane.
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EXERCISES

1. Give examplesof geometricsolidsbounded by one, two, three,

four planes (or parts of planes).
2. Show that if a geometric figure is congruent to anothergeometric
figure, which is in its turn congruent to a third geometricfigure, then

the first geometric figure is congruent to the third.
3. Explain why two straight lines in space can intersect at most at
onepoint.
4{. Referring to \3654, show that a plane not containing a givenstraight
linecan intersect it at most at one point.

5? a Give an example' of a surface other than the planewhich, like

the plane, can be superimposed on itselfin a way that takes any one
given point to any other given point.
Remark: The required example is not unique.
6. Referring to \3654\177show that for any two points of a plane,thereisa
straight line lying in this plane and passing throughthem,and that

such a line is unique.

7. Usea straightedge to draw a line passing through two points given
on a sheet of paper. Figure out how to check that the line is really
straight.
It\361nt: Flip the straightedge upside down.

8. \177Fold a sheet of paper and, using the previous problem, check that

the edge is straight. Can you explain why the edge of a foldedpaper
is \177traight? ._

Remark: There may exist several correct answers to this question.
9. Show that for each point lying in a plane there is a straight line

lying in this plane and passing throughthis point. How many such

lines are there?

10. Find surfacesotherthan the plane which, like the plane, together
with each point lying on the surface contain a straight line passing
through this point.

H\361nt: One can obtain such surfacesby bending a sheet of paper.

11. Referringto the definition of congruent figures given in \3651, show

that any two infinite straight lines are congruent; that any two rays
are congruent.

12. On a given line, mark a segment congruent to four times a given

segment, using a compass as few times as possible.

asters * mark those exercises which we consider more difficult.
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13. is the sum (difference)of given segmentsunique? Give an ex-

ample of two distinct segmentswhich both are sums of the given
segments. Showthat thesedistinctsegments are congruent.

1J. Give an example of two non-congruentarcswhose endpoints co-

incide. Can such arcs belong to non-congruent circles? to congruent
circles? to the same circle?
15. Give examples of non-congruent arcs subtended by congruent
chords.Are there non-congruent chords subtending congruent arcs?
16. Describeexplicitfly the operations of subtraction of arcs, and
multiplicationand division of an arc by a whole-number.
17. Followthe descriptionsof operations with arcs, and show that
multiplying a givenarc by 3 and then dividing the result by 2, we

obtain an arc congruent to the arc resultingfromthe sameoperations
performed on the given arc in the reverse order.
18. Can sums (differences) of respectively congruent line segments,
or arcs,be non-congruent? Can sums (differences) of respectively
non-congruent segments, or arcsbe congruent?

19. Following the definition,of sum of segments or arcs,explain why

addition of segments (or arcs) obeys the commutativity law.

Hint: Identify a segment (or arc) AB with BA.



Chapter I

THE STRAIGHT LINE

Angles

13. Preliminary concepts. A figure formed by two rays drawn

from the same point is called an angle. The rays which form the

angle are called its sides, and their commonendpoint is called the
vertex of the angle. One\177should think of the sides as extending away\177

from the vertex indefinitely.
A

A

D E

B

A

o B

Figure 9 Figure

An angle is usually denoted by three uppercase letters of which
the middleonemarks the vertex, and the other two label a pointon
eachof the sides. One says, e.g.: \"the angle AOB\" or \"theangle
BOA\". (Figure 9). It is possible to denote an angle by one letter

marking the vertex provided that no other angles with the same

vertex are present on the diagram.Sometimes we will also denote

an angle by a number placed inside the angle next to its vertex.

9
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The sides of an angle divide the whole plane containing the angle
into two regions. One of them is calledthe interior region of the

angle, and the other is calledthe exterior one.Usually the interior

region is considered the one that containsthe segmentsjoining any

two points on the sides of the angle,e.g. the points A and B on the
sides of the angleA\270B (Figure 9). Sometimes however one needs
to considerthe otherpart of the plane as the interior one. In such

cases a special comment will be made regardingwhich region of the

plane is considered interior. Bothcasesare represented separately in

Figure 10, where the interiorregionin each case is shaded.

Rays drawn from the vertexofan angleand lying in its interior

(OD, OF, Figure 9) form new angles (AOD, DOE, FOB) which
are consideredto be parts of the angle (AOB).

In writing, the word \"angle\" is often replaced with the symbol Z.
For instance,insteadof \"angie AOB\" one may write: ZAOB.

14. Congruent and non-congruent angles. In accordance

with the general definition of congruent figures (\3651) two angles are

considered congruent if by moving one of them it is possibleto identify

it with the other.

Figure 11

SUppose, for example, that we lay the angle AOB ontothe angie
A'O'B'(Figure 11) in a way such that the vertexO coincideswith

the side OB goes along OB', and the interiorregions of both angles
lie on the same sideofthe lineO\177B( If OA turns out to coincide with
O\177A \177,then the angles are congruent. If OA turns out to lieinsideor
outsidethe angle A'O'B ', then the angles are non-congruent,and the
one,that lies inside the other is said to be smaller.

15.Sum ofangles.The sum of angles AOB and A'O'B' (Fig-
ure 12)is an angle defined as follows. Construct an angle MNP
-congruent to the given angle AOB, and attach to it the angle PNQ,

congruent to the given angle A'O\177B \177,as shown. Namely, the angle
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MNP should have-with the angle PNQ the same vertex N, a com-

mon side NP, and the interior regions of bo\177h angles should lie on

the opposite sides of the commonray NP. Then the angle MNQ is
called the sum of the anglesAOB and A'O'B( The interior region

of the sum is considered the part ofthe planecomprised by the inte-

rior regions of the summarids.Thisregioncontainsthe commonside
(NP)of the summarids. One can similarly form the sum of three
and more angles.

B

M

Figure 12

Addition of angles obeys the commutativity and associativity

laws just the same way addition of segmentsdoes. From the con-

cept of addition of angles one derivesthe conceptof subtraction of

angles, and multiplication and division of angles by a whole number.

D 0 A

Figure 13 Figure 14 Figure 15

Very often one has to deal with the ray which divides a given
angle into halves; this ray is called the bisector of the angle(Figure

16.Extensionof the concept of angle. When one computes
the sumofanglessomecasesmay occur which require special atten-
tion.

(1) 'It is possiblethat after addition of several angles, say, the
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three angles: AOB, BOC and COD (Figure14),the side OD of the
angle COD will happento be the continuation of the side OA of the
angleAOB.We will obtain therefore the figure formed by two half-

lines (OA and OD) drawn from the same point (O) and continuing
each other. Such a figure is aJso considered an angle and is called a

straight angle.

(2) It is possible that afterthe addition of several angles, say, the
five angles: AOB, BOG, COD, DOE and EOA (Figure15)the side

OA of the angle EOA will happen to coincidewith the side OA of
the angle AOB. The figure formed by such rays (together with the
whole plane surrounding the vertex O)' is also considered an angle
and is called a full angle.

(3) Finally, it is possible that added angleswill not only fill in
the whole plane around the common vertex, but will even overlap
with each other, covering .the plane around the common vertex for

the second time, for the third time, and soon. Such an angle sum is

congruent to one full angle added with another angle, or congruent
to two full angles added with another angle, and so on.

A B

Figure 16 Figure 17

17. Central angle. Theangle (AOB, Figure 16) formed by two
radii of a circleis called a central angle; such an angle and the arc
contained between the sides of this angle are said to correspond to

each other.

Central angles and their correspondingarcs have the following

properties.

In one circle\177 or two congruent circles:

(1) If central angles are congruent,thenthe correspond-

'ing arcs are congruent;

(2) Vice versa, if the arcs are congruent,then the corre-
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sponding central .angles are congruent.
Let ZAOB= ZCOD(Figure 17); we need to show that the arcs

AB and CD are congruent too. Imagine.that the sector AOB is
rotatedabout the center O in the direction shown by the arrow until

the radius OA coincideswith OC. Then due to the congruence of

the angles, the radius OB will coincidewith OD; therefore the arcs
AB and CD will coincidetoo,i.e.they are congruent.

The second property is established similarly.

18. Circular and angular degrees. Imagine that a circle is

divided into 360 congruent parts and all the division points are con-

nected with the center by radii. Then around the center, 360 central

angles are formedwhichare congruent to each other as central angles
correspondingto congruent arcs. Each of these arcs is called a cir-
culardegree,and each of those central angles is called an angular
degree. Thus one can say that a circular degree is 1/360thpart of
the circle, and the angular degree is the centralanglecorresponding
to it.

The degrees (both circular and angular) are further subdivided
into 60 congruent parts called minutes, and the minutes are further
subdividedinto 60 congruent parts called seconds.

\337 A

55 \370

Figure 18 Figure 19

D

19. Correspondence between central angles and arcs. Let
AOB be some angle (Figure 18). Between its sides,draw an arc CD

of arbitrary radius with the centerat the vertex O. Then the angle
AOB will become the central angle corresponding to the arc CD.
Suppose,for example, that this arc consists of 7 circulardegrees
(shown enlarged in Figure 18). Then the radii connectingthe divi-

sion points with the center obviously divide the angleAOB into 7
angular degrees. More generally, one can say that an angleis mea-

sured by the arc corresponding to it, meaning that an anglecontains
as many \177angular degrees, minutes and seconds as the corresponding
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arc contains circular degrees,minutes and seconds. For instance, if
the arc \177'D contains 20 degrees 10 minutes and 15 secondsof cir-
cular units, then the angle A01\177 consists of 20 degrees 10 minutes
and 15secondsof angular units, which is customary to express as:
ZAOt\177 = 20\37010\17715 \177,using the symbols \370, \177and \177to denote degrees,

minutes and seconds respectively.
Unitsof angular degree do not depend on the radius of the circle.

Indeed,adding 360 angular degrees following the summation rule
describedin \36515, we obtain the full angle at the centerof the circle.
Whatever the radius of the circle, this full ar\177gle will be the same.
Thus one can say that an angular degree is 1/360th part of the full

angle.

20. Protractor. This device (Figure 19) is usedfor measuring

angles. It consists of a semi-diskwhosearc is divided into 180 \370. To

measure the angle DCE, one places the protractorontothe angle

in a way such that the.center of the semi-diskcoincideswith the

vertex of the angle, and the radius CB lieson the side CE. Then

the number of degrees in the arc contained between the sides of the
angle DCE shows the mealsure of the angle. Using the protractor
one canalsodraw an angle containing a given number of degrees (e.g.
the angle of 90 \370, 45 \370, 30 \370, etc.).

EXERCISES

20. Draw any angle and, using a protractor and a straightedge, draw
its bisector.
21. In the exterior of a given angle, draw another angle congruent

to it. Can you do this in the interiorof the given angle?

22. How many common sides can two distinct angles have?

25. Can two non-congruent anglescontain55angular degrees each?

2\177{. Can two non-congruent arcs contain 55 circular degreeseach?
What if these arcs have the same radius?

25. Two straight lines intersect at an angle conGaining 25\370. Find the

measures of the remaining three anglesformedby these lines.

26. Three lines passing through the samepoint divide the plane

into six e\177ngles. Two of them turned out to contain 25\370 and 55 \370

respectively. Find the measures of the remaining four angles.
-'27.*Using only compass, construct a 1\370arc on a circle, if a 19\370arc

of this circle is given.



2. Perpendicuiarlines 15
2 Perpendicular lines

21. Right, acute and obtuse angles. An angle of 90\370(con-

gruent therefore to one half of the straight angieor to onequarter

of the full angle) is called a right angle. An angle smaller than the

right one is called acute, and a greater than right but smaller than
straight is calledobtuse (Figure 20).

right acute obtuse

Figure 20

All right angles are,ofcourse,congruent to each other since they
contain the samenumber of degrees.

The measure of a right angle is sometimes denoted by d (the
initial letter of the Frenchword droit meaning \"right\.

22. Supplementary angles. Two angles(AOB and BOC, Fig-

ure 21) are called supplementary if they have one common side,
and their remaining two sides form continuations of each other. Since
the sumof such angles is a straight angle, the sum of two supplemen-

tary angles is 180 \370(in other words it is congruent to the sumof two

right angles).

B

A 0 C
D

Figure 21 Figure 22

For each angle one can constructtwo supplementary angles. For

example, for the angle AOB (Figure22),prolonging the side AO we
obtain one supplementary angleBO\177', and prolonging the side BO
we obtain another supplementary angle AOD. Two angles supple-
mentaw to the same oneare congruent to each other, since they both
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contain the same number of degrees, namely the number that sup-

plements the number of degreesin the angle\1774OB to 180 \370contained

in a straight angle.

If \1774OB is a right angle (Figure 23), i.e. if it contains90\370, then

each of its supplementary angles COB and AOD must also be right,
since it contains 180\370- 90 \370, i.e. 90 \370. The fourth angle COD has to
be rightaswell, since the three angles AOB, BOC and AOD contain
270\370altogether, and therefore what is left from 360\370for the fourth

angle C\270D is 90\370too. Thus, if one of the four anglesformedby two

intersecting lines (AC and BD, Figure 23) is right, then the other

three angles must be right as well.
23. A perpendicular and a slant. In the case when two

supplementary angles are not congruent to each other,theircommon

side (OB, Figure 24) is called a slant \177to the line (AC) Containing
the other two sides. When, however, the supplementary angles are
congruent(Figure25) and when, therefore, each of the anglesis right,

the common side is called a perpendicular to the line containing

the other two sides. The common vertex (O) is called the foot of
the slant in the first case, \177nd the foot of the perpendicular in
the second.

c A

Figure 23

A C A 0

Figure 24 Figure 25

Two lines (AC and BD, Figure 23) intersecting at a right angle
are calledperpendicular to each other. The-fact that the line AC
is perpendicularto the line BD is written: AC J_ BD.

aemarks. (1) If a perpendicular to a line AC (Figure 25) needs to
be drawn throughapointO lying on this line, then the perpendicular
is said to be \"erected\" to the line AC, and if the perpendicular.
needsto bedrawn through a point B lying outside the line,then the
perpendicular is said to be \"dropped\" to the line (no matter if it is

_.upward, downward or sideways).

CAnother name used for a slant is an oblique line.
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(2)Obviously, at any given point of a given line, on eithersideof

it,onecan erect a perpendicular, and such a perpendicular isunique.
24. Let us prove that from any point lying outside a given

line one can drop a perpendicular to this line, and such
perpendicular is unique.

Let a line AB (Figure 26) and an arbitrary point M outsidethe

line be given. We need to showthat, first,onecan drop a perpendic-

ular from this point to AB, and second, that there is only one such
perpendicular.

Imagine that the diagram is folded so that the upperpart of it

is identified with the lowerpart. Then the point M will take some

position N. Mark this position, unfold the diagram to the initial form
and then connectthe points M and N by a line. Let us show now that

the resulting line MN is perpendicularto AB, and that any other
line passing through M, for example MD, is not perpendicular to
AB. For this, fold the diagram again. Then the point M will merge
with N again, and the points .C and D will remain in their places.
Therefore the line MC will be identified with NC, and MD with
ND. It follows that ZMCB = ZBCN and ZMDC -- \177CDN.

But the angles MCB and BCN are supplementary.Therefore
each of them is right, and hence MN \361 AB. Since MDN is not a
straight line (becausethere can be no two straight lines connecting
the points M and N), then the sum of the two congruent angles
MDC and CDN is not equal to 2d. Therefore the angleMDC is
notright, and hence MD is not perpendicular to AB. Thus one can

drop no other perpendicular from the point M to the line AB.
- M

A
D

A

Figure 26 Figure 27

25. The drafting triangle. Forpractical construction of a per-

pendicular to a givenlineit is convenient to use a drafting triangle
made to have oneof its angles right. To draw the perpendicular to a
lineAB (Figure 27) through a poin\177 C lying on this line, or through
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a point D taken outsideof this line, one can align a straightedge
with the line AB, the drafting triangle with the straightedge, and
then slide the trianglealong the straightedge until the other side of
the right anglehits the pointCorD, and then draw the line C/\177.

26. Vertical angles. Two angles are calledvertical if the sides
of oneof them form continuations of the sides of the other. For
instance, at the intersection of two lines AB and CD (Figure28)
two pairs of vertical angles are formed: AOD and COB,AOC and

DOB (and four pairs of supplementary angles).
Two vertical anglesare congruentto each other (for ex-

ample, \177AOD =/_BOC) since each of them is supplementary to the
sameangle (to ZDOB or to ZAOC), and such angles,as we have

seen (\36522), are congruent to each other.

A D

C D ,

A E

O E
B

D

Figure 28 Figure 29 Figure 30

27. Angles that have a commonvertex.It is useful to re-
member the following simple facts about anglesthat have a common

vertex:

(1) If the sum ofseveralangles (AOB, BOC, COD, DOE, Figure
29) that have a commonvertexis congruent to a straight angle, then
the sum is 2d, i.e.180\370.

(2) If the sum of several angles(AOB,BOC,COD,DOE,EOA,

Figure 30) that have a common vertex is congruent to the full angle,
then it is 4d, i.e. 360\370.

(3) If two angles (AOB and BOC, Figure 24) have a common

(o) (os) a=a =p to

then their two other sides (AO and OC) formcontinuations of each

other (i.e. such angles are supplementary).

_EXERCISES

28.Is'thesum of the angles 14\37024'44\177'and 75\37035'25 \177'acute or obtuse?
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29. Five rays drawn from'the same point divide the full angie into

five congruent parts. How many different angles do these five rays
form? Which of these angles are congruent to each other? Which of

them are acute? Obtuse? Find the degreemeasureof each of them.

30. Can both angles, whose sum is the straight angle, be acute?

obtuse?

31. Find the smallest number of acute (orobtuse)angleswhich add

up to the full angle.

32. An anglemeasures38\37020'; find the measure of its supplementary
angles.
33. Oneofthe angles formed by two intersecting lines is 2d/5. Find
the measures of the other three.

34. Find the measureof an angie which is congruent to twice its
supplementaryone.
35. Two angles ABC and CBD having the common vertexB and

the common side BC are positioned in such a way that they do

not cover one another. The angleABC= 100\37020 ', and the angle
CBD = 79\37040 '. Do the sides AB and BD form a straight line or a
bent one?

36. Two distinct rays, perpendicular to a given line, are erectedat
a given point. Find the measure of the angle betweentheserays.

37. In the interior of an obtuse angie,two perpendiculars to its sides
are erected at the vertex.Find the measure of the obtuse angle, if

the angle betweenthe perpendiculars-is4d/5.

Prove:

38.Bisectors of two supplementary angles are perpendicular to each
other.
39.Bisectorsoftwo vertical angles are continuations of each other.

J0. If at a point\270 of the line AB (Figure 28) two congruent angles
A\270D and B\270C are built on the opposites sidesof AB, then their
sidesODand \270C form a straight line.

J1. If from the point \270 (Figure 28) rays OA, OB, OC and OD
are constructed in such a way that ZAOC = ZD\270B and ZA\270D --

LC\270B, then \270B is the continuation of OA, and \270D is the contin-
uation of OC.
Hin\177: Apply \36527, statements 2 and 3.
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3 Mathematical propositions

28.Theorems, axioms, definitions. From what we have said
so far one can conclude that some geometric statements we consider
quite obvious (for example, the properties of planes and lines in \3653

and \3654) while some others are established by way of reasoning (for
example,the propertiesofsupplementary angles in \36522 and vertical.

angles in \36526). In geometry, this process of reasoning is a principal
way to discover properties of geometric figures. It would be instruc-

tive therefore to acquaint yourselfwith the forms of reasoning usual
in geometry.

All facts establishedin geometryare expressed in the form of
propositions. These propositionsare divided into the following types.

Definitions. Definitions are propositionswhich explain what

meaning one attributes to a nameor expression..For instance, we

have already encountered the definitionsof centralangle,right angle,

perpendicular lines, etc.

Axioms. Axioms 2 ar\177 those facts which are accepted without
proof. This includes,for example, some propositions we encountered
earlier (\3654): through any two points there is a uniqueline; if two

points of a line lie in a given planethen allpointsofthis line lie in

the same plane.

Let ds alsomentionthe following axioms which apply to any kind
of quantities:

if eachof two quantities is equal to a third quantity, then these
two quantities are equal to each other;

if the same quantity is added to or subtractedfromequalquan-

tities, then the equality remains true;

if the samequantity is added to or subtracted from unequal quan-
tities,then the inequality remains unchanged, i.e. the greater quan-
tity remains greater.

Theorems. Theorems are those propositions whosetruth is
found only through a certain reasoning process (proof). The fol-

lowing propositions may serve as examples: -
if in one circleor two congruent circles some central angles are

congruent, then the correspondingarcs are congruent;

if one of the four angles formed by two intersecting lines turns
out to be right, then the remaining three angles are right as well.

2In geometry, some axioms are traditionally called postulates.
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Corollaries. Corollariesarethosepropositionswhich follow di-

rectly from an axiom or a theorem.For instance, it follows from the
axiom \"there is only one line passing through two points\" that \"two

lines can intersect at one point at most.\"
29. The contentofa theorem.In any theorem one can distin-

guish two parts: the hypothesis and the conclusion. The hypothesis
expresses what is consideredgiven, the conclusion what is required
to prove. For example,in the theorem \"if central angles are con-
gruent, then the corresponding arcs are congruent\" the hypothesis
is the first part of the theorem: \"if central angles are congruent,\"
and the conclusionis the secondpart: \"then the corrdsponding arcs

are congruent;\" in other words, it is given (known to us) that the
central angles are congruent,and it is required to prove that under
this hypothesis the corresponding-arcsare congruent.

The hypothesi's and the \177onclusion of a theorem may sometimes
consist of several separatehypotheses and conclusions; for instance,
in the theorem \"if a number is divisible by 2 and by 3, then it is

divisible by 6,\" the hypothesis consistsof two parts: \"if a number is
divisible by 2\" and \"if the number is divisible by 3.\"

It is useful to notice that any theorem can be rephrasedin such

a way that the hypothesis will begin with the word \"if,\" and the
conclusion with the word \"then.\"Forexample,the theorem \"vertical

angles are congruent\" can be rephrased this way: \"if two angles are
vertical, then they are congruent.\"

30. The converse theorem. The theorem converseto a given

theorem is obtained by replacing the hypothesisof the given theorem

with the conclusion (or some part of--the conclusion), and the con-
clusion with the hypothesis (or some.partofthe hypothesis) of the

given theorem. For instance, the following two theorems are converse
to each other:

If centralanglesare congru-

ent, then the corresponding arcs
are congruent.

If arcs are congruent, then

the corresponding central angles
are congruent.

If we calloneofthesetheorems direct, then the other one should
be calledconverse.

In this example both theorems, the direct and the converseone,
turn out to be true. This is not always the case. For example the
theorem: \"if two angles are vertical, then they are congruent\"istrue,

but the converse statement: \"if two angles are congruent, then they
are vertical\"is false.
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Indeed, suppose that in someangle the bisector is drawn (Figure
13). It divides the angleinto two smaller ones. These smaller angles
are congruent to eachother,but they are not vertical.

EXERCISES

4{2.Formulate definitionsof supplementary angles(\36522) and vertical

angles (\36526)using the notion of sidesof an angle.
43. Find in the text the definitions of an angl\177, its vertex and sides,
in terms of the notionofa ray drawn from a point.

JJ.\177 In Introduction, find the definitions of a ray and a straight seg-
ment in terms of the notionsof a straight line and a point. Are there
definitions of a point,line,plane, surface, geometric solid? Why?
Remark: These are examplesofgeometricnotionswhich are consid-

ered undefinable.

45. Is the following proposition from \3656 a definition, axiom or theo-
rem: \"Two segments are congruent if they can be Iaid oneonto the
othersothat their endpoints coincide\"?

J 6. In the text, find the deilnitions of a geometric figure, and congru-
ent geometricfigures. Are there definitions of congruent segments,
congruent arcs, congruent angles? Why?

4{7. Define a circle.
48. Formulatethepropositionconverse to the theorem: \"If a number

is divisible by 2 and by 3, then it is divisible by 6.\" Is the converse
proposit.iontrue? Why?

49. In the proposition from \36510: \"Two arcs of the same circle are
congruentif they can be aligned so that their endpointscoincide,\"
separatethe hypothesis from the conclusion, and state the converse
proposition.Is the converse proposition true? Why?

50. In the theorem: \"Bisectorsofsupplementary angles are perpen-

dicular,\" separate the hypothesis from the conclusion, and formulate
the converse-proposition. Is the conversepropositiontrue?

51. Give an example that disprovesthe proposition:\"If the bisectors

of two angles with a commonvertexare perpendicular, then the

angles are s.upplementary.\" Is the conversepropositiontrue?

4 Polygons and triangles

-- 31. Broken lines. Straight segments' not lying on the same line

are said to form a broken line (Figures 31, 32) if the endpoint of the
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first segment is the beginningof the secondone,the endpoint of the

second segment is the beginningof the third one,and so on. These

segments are called sides, and the verticesof the angles formed by

the adjacent segments vertices of the brokenline.A broken line is

denoted by the row of letters labelingits vertices and endpoints; for

instance,' one says: \"the broken line ABCDE.\"

A broken line is calledconvexif it lieson onesideof each of

its segments continued indefinitely in both directions. For example,
the broken line shown in Figure 31 is convexwhile the one shown in

Figure 32 is not (it liesnotononesideof the line BC).

A E

Figure 31 Figure 32

A broken line whose endpoints coincideis calledclosed(e.g.the

lines fiBODE or ADOBE in Figure 33). A closedbrokenline may

have self-intersections. For instance, in Figure 33, the lineADOBE
isSelf-intersecting, while ABODE is not.

c
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D
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Figure 33

32. Polygons. The figure formed by a non-self-intersecting

closed broken line together with the part of the plane bounded by
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this line is called a polygon (Figure 33). The sides and vertices
of this broken line are called respectively sides and vertices of
the polygon, and the angles formed by each two adjacent sides(in-
terior) anglesof the polygon. More precisely, the interior of a

polygon's angle is Considered that side which containsthe interior
part of the polygon in the vicinity of the vertex. For instance, the

angle at the vertex P of the polygon M2VPQ_/\177q is the angle greater

than 2d (with the interiorregion shaded in Figure 33). The broken
line itselfis calledthe boundaryof the polygon, and the segment

congruent to the sumof allofitssides-- the perimeter. A half of
the perimeter is oftenreferredto as the semiperimeter.

A polygon is called convex if it is boundedby a convex broken

line. For example, the polygonABCD/\177 shown in Figure 33 is convex
whilethe polygon M2V.P(\177R$ is not. We will mainly considerconvex
polygons.

Any segment (like AD, BE, M\177R, ..., Figure 33) which connects
two vertices not belonging to the same side of a polygon is calleda
diagonalofthe pplygon.

The smallest number o\177[sides in a polygon is three. Polygons are
namedaccordingto the number of their sides: triangles, quadri-
laterals, pentagons, hexagons,and so on.

The word \"triangle\" will often be replaced by the symbol/\177.

33. Types 'of triangles. Triangles are classified by relative

lengths of their sides and by the magnitudeof theirangles.With

respect to the lengths of sides, triangles can be scalene(Figure 34)

when all three sides have different lengths, isosceles (Figure 35)

when two sides are congruent, 'and equilateral (Figure 36)
when all three sidesare congruent.

Figure 34 Figure 35 Figure 36

\" With respect to the magnitude of angles, trianglescanbeacute
(Figure 34) -- when all three angles are acute,right (Figure 37)
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when among the angles there is a right one, and obtuse (Figure 38)3
-- whenamongthe anglesthereis an obtuse one.

Figure 37 Figure 38

In a right triangle, the sidesof the right angle are called legs,
and the side oppositeto the right angle the hypotenuse.

34. Important lines in a triangle. One of a triangle's sides
is often referred to as the base,in which case the opposite vertex is
called the vertex of the triangle, and the other two sides are called
lateral.Then the perpendicular dropped from the vertex to the base
or to its continuation is called an altitude. Thus, if in the triangle
ABe (Figure39),thesideAC is taken for the base, then B is the
vertex, and BD is the altitude.

B

A D

B

F E C A E C D

Figure 39

The segment (BE, Figure39) connecting the vertex of a triangle
with the midpointofthe baseiscalled a median. The segment (BF)
dividing the angleat the vertex into halves is called a bisector of
the triangle (which generally speaking differs from both the median
and the altitude).

*We Will se\177 in \36543 that a triangle may have at most oneright or obtuse angle.



26 Chapter 1. THE STRAIGHTLINE

Any triangle has three altitudes, three medians, and three bi-
sectors,since each side of the triangle can take on the roleof the

base.

In an isosceles triangle, usually the side otherthan each of the

two congruent ones is calledthe base.Respectively, the vertex of an
isosceles triangle is the vertexof that angle v\177hich is formed by the
congruent sides.

EXERCISES

52. Four points on the plane are vertices of three different quadri-

laterals. How can this happen?
53. Can a convex broken line self-intersect?

5g. Is it possible to tile the entireplane by non-overlapping polygons

all of whose angles contain140\370each?

55. Prove that each diagonal of a quadrilateraleitherliesentirely in

its interior, or entirely in its exterior. Give an exampleofa pentagon

for which this is false. ,
56. Prove that a closedconvex broken line is the boundary of a
polygon.
57. Is an equilateral triangle considered isosceles? Is an isosceles
triangleconsideredscalene?

58.* How many intersection points can three straight lineshave?

59. Prove that in a right triangle, three altitudespass through a

common point.

60. Show that in any triangle, every two medians intersect. Is 'the
same true for every two bisectors? altitudes?

61. Give an example of a trianglesuch that only one of its altitudes
lies in its interior.

5 Isosceles triangles and symmetry
35.Theorems.

(1) In an isosceles triangle, the bisector of the angleat
the vertex is at the same time the median and thealtitude.

(2) In an isosceles triangle, the angles at the base are
congruent.

-'- Let AABC (Figure 40) be isosceles, and let the line BD be the
bisector of the angleB at the vertex of the triangle. It is requiredto
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prove that this bisector BD is alsothe median and the altitude.

Imagine that the diagramis foldedalongthe line BD so that

ZABD falls onto ZCBD. Then, due to congruenceof the angles1
and 2, the side AB will fall onto the sideCB,and due to congruence

of these sides, the point A will merge with C. Therefore DA will

coincide with DC, the angle 3 will coincidewith the angle4, and the
angle 5 with 6. Therefore

DA=DC, _/_3=Z4, and Z5=Z6.

It follows from DA = DC that BD is the median.It follows from

the congruence of the angles 3 and 4 that theseangles are right, and

hence BD is the altitudeof the triangle.Finally, the angles 5 and 6
at the baseof the triangle are congruent.

A D C

Figure 40

36. Corollary. We see that in the isoscelestriangle ABC (Fig-

ure 40) the very same line BD possessesfour properties: it is the
bisector drawn from the vertex, the median to the base, the altitude
droppedfrom the vertex to the base, and finally the perpendicular

erected from the base at its midpoint.
Sinceeach of these properties determines the position of the line

BD unambiguously, then the validity of any of them impliesall the

others. For example, the altitude dropped to the base of an isosceles
triangleis at the same time its bisector drawn from the vertex, the
medianto the base, and the perpendicular erected at its midpoint.

37. Axial symmetry. If two points (A and A', Figure 41) are
situated on the opposite sides of a line a, on the sameperpendicular

to this line, and the same distance away from the foot of the perpen-
dicular (i.e. if AF is congruent to FA\177), then such points are called
symmetric about the linea.
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Two figures (or two parts of the same figure) are called symmetric
about a line if for each point of one figure (A, B, C, D, E, ..., Figure

41) the point symmetric to it about this li\177e ( A', B', C \177,D \177,E \177,... )

belongs to the other figure, and vice versa. A figure is said to have
an axis of symmetry a if this figure is symmetric to itself about
the line a, i.e. if for any point of the figure the symmetric pointalso
belongsto thefigure.

A

B a B'

F

C C'

Figure 41 Figure 42

D C

For example, we have seen that the isoscelestriangle ABC (Fig-

ure 42) is divided by the bisector BD into two triangles (left and
right) which can be identified with each other by folding the dia-
gram along the bisector. One can conclude from this that whatever

point is taken on the left half of the isoscelestriangle,onecan always

\177nd the point symmetric to it in the right half. Forinstance, on the

side AB, take a point M. Mark on the side BC the segment
congruent to BM. We obtain the point M' in the triangle symmet-
ric to M aboutthe axis BD. Indeed, AMBM' is isosceles since
BM = BM: Let F denote the intersection point of the segment
MM' with the bisector BD of the angle B. ThenBK is the blsector

in the isosceles triangle MBM: By \36535 it is also the altitude and the
median.ThereforeMM'isperpendicular to BD, and MF = M'F,
i.e. M and M' are situated on the opposite sides of BD, on the same.

perpendicular to BD, and the same distance away from its foot F.
Thus in an isosceles triangle, the bisectoroftheangle at the

vertex is an axis of symmetry of the triangle.
38.Remarks. (1) Two symmetric figures can be superimposed

-'-by rotating one of them in space about the axis of symmetry until

the rotated figure falls into the originalplaneagain. Conversely, if
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two figures can be identified with each other by turning the plane

in space about a line lying in the plane, then these two figures are
symmetricaboutthis line.

(2) Although symmetric figures can be superimposed, they are
not identicalin their position in the plane. This shouldbe understood
in the following sense: in order to superimpose two symmetric figures

it is necessary to flip one of them around and therefore to pull it off

the plane temporarily; if however a figure is boundto remain in the

plane, no motion can generally speakingidentify it with the figure
symmetric to it about a line.For example, Figure 43 shows two pairs
of symmetric letters:\"b\" and \"d,\" and \"p\" and \"q.\" By rotating the
letters inside the pageone can transform '%\" into \"q,\" and \"d\" into

\"p,\" but it is impossible to identify \"b\" or \"q\" 'with \"d\" or \"p\"

without lifting the symbols off the page.

(3) Axial symmetry is frequently found in nature (Figure 44).

pq

Figure 43 Figure 44

EXERCISES

62. How many axes of symmetry does an equilateral triangle have?
How about an isoscelestriangle which is not equilateral?

63.* How many axesof symmetry can a quadrilateral have?

6J. A kite is a quadrilateral symmetric about a diagonal. Give an

example of: (a) a kite; (b) a quadrilateralwhich is not a kite but has
an axis of symmetry.

65. Can a pentagon have an axis of symmetry passing through two

(one, none) of its vertices?
66.*Two points A and B are given on the samesideofa line
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Find a pointC on2WN such that the line MN would makecongruent
angleswith the sides of the broken line ACB.

Prove theorems:

67.Inan isosceles triangle, two medians are congruent, two bisectors
are congruent,two altitudes are congruent.

68. If from the midpointofeachofthe congruent sides of an isosceles
triangle, the segmentperpendicularto thissideiserected and con-

tinued to its intersection with the otherofthe congruent sides of the

triangle, then these two segments are congruent.
69.A line perpendicular to the bisector of an anglecutsoff congruent

segments on its sides.

70. An equilateral triangle is equiangular (i.e. all of its anglesare
congruent).

71. Vertical angles are symmetric to eachotherwith respect to the

bisector of their supplementary angles.
72. A triangle that has two axes of symmetry has three axes of

symmetry.

73. A quadrilateral is a kite if it has an axis of symmetry passing
througha vertex.

74{. Diagonals Of a kite are perpendicular.

6 Congruence tests for triangles

39.Preliminaries. As we know, two geometric figures are called
congruent if they can be identified with each other by superimposing.

Of course, in the identified triangles, alltheircorresponding elements,

such as sides, angles, altitudes, mediansand bisectors,are congruent.

However, in order to ascertain that two triangles are congruent, there
is no need to establishcongruence of all their corresponding elements.
It sufficesonly to verify congruence of some of them.

40. Theorems.4
(1) SAS-test: If two sides and the angle enclosedby them

in one triangle are congruent respectively to two sides and

the angle enclosed by them in another triangle, thensuch
triangles are congruent.

(2) ASA-test: If one side and two anglesadjacentto it in
one triangle are congruent respectively to one side and two

4SAS stands for \"side-angle-side\", ASA for \"angle-side-angle, and of course
SSS for \"side-side-side.\"
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angles adjacent to it.in.another triangle, then such triangles
are congruent.

(3) SSS-\177est' If three sides of one triangle are. congruent
respectivelyto threesidesof another triangle, then such
triangles are congruent.

A

C B C' B'

Fiqure 45

(1) Let ABC and A'B'C'be two triangles (Figure 45) such that

AC= A\177C ' AB = A'B' ZA = ZA'.

It is required to prove that these triangles are congruent.
Superimpose/kABConto/kA'B'C'in such a way that \1774would

coincide with \1774', the side AC would go along \1774'C t, and the side AB
would lie on the same side of \1774'C \177as A\177B \177. 5 Then: since AC .is
congruent to \1774\177C\177the point C will merge with C'; dueto congruence

of ZA and Z\1774 \177,the side AB will go along A\177B \177,and due to congruence
of these sides, the point B will merge with B \177. Therefore the side

BC will coincide with B\177C ' (since two points can be joined by only

one line),-and hence the entire triangles will be identified with each

other. Thus they are congruent.
(2) LetABCand A\177B\177'\177(Figure 46) be two tri\177angles such that

ZC = ZC', /B = ZB', CB = C'B'.

It isrequired to prove that these triangles are congruent. Superim-
pose/kABC onto /kJ\177B\177C\177in such a way that the point C would

coincide with C \177,the side CB would go along C\177B \177,and the vertex .4
would lie on the samesideof C\177B \177as \1774\177.Then: since CB is congru-
ent to C'B\177,the point B will merge with B\177,and due to congruence of

5For this and some other operations in this section it might be necessaryto
flip the triangle over.
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the angles B and B t, and C and C t, the side BA will go along B'A t,

and the side CA will go along CtA: Sincetwo lines can intersect

only at one point, the vertexA will have to merge with A: Thus the
trianglesare identified and are therefore congruent.

A A'

C B C' B'

Figure 46

(3) Let ABC and A'B'Ct be two triangles such that

AB = A'B', BC= BtC', CA = CtA '.

It is requiredto prove tha\177 these triangles are congruent. Proving
this test by superimposing, the same way as we proved the first

two tests, turns out to be awkward,becauseknowing nothing about

the measure of the angles, we would not be able to conclude from
coincidenceof two corresponding sides that the other sides coincide
as well.Insteadof superimposing, let us apply juxtaposing.

Juxtapose/\177A/\177aand/\\A\177Btat in. such a way that their congru-
ent sidesAa and Ata\177 would coincide (i.e. A would merge with A t

and a with at), and the verticesB and B t would lie on the oppo-
sitesidesofArC( Then AABC will occupy the position /\\AtBttat
(Figure 47). Joiningthe verticesB\177 and Btt we obtain two isosceles
triangles BtA\177B tt and BratBit with the common base BtBt\177. But in an

isosceles triangle\177 the angle\177 at the base are congruent (\36535). There-

fore /1 = Z2 and /3 =/4, and hence/AtBtCt =/A'Bt'C t = lB.
But then the given triangles must be congruent, since two sides and
the angleenclosedby them in one triangle are congruent respectively
to two sides and the angle enclosed by them in the othertriangle.

Remark. In congruent triangles, congruent angles are opposed..
to congruent sides, and conversely, congruent sides are opposed to
congruent angles.

The congruence tests just proved, and the skill of recognizing
congruent triangles by the above criteria facilitate solutions to many

--geometry problems and are necessary in the proofs of many theo- -

rems. These congruence tests are the principalmeansin discovering
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propertiesofcomplex-geometricfigures. The reader will have many
occasions to seethis.

B\177 B'

C'A' A'

B\" B\"

Figure 47

EXERCISES

75. Prove that a trianglethat has two congruent angles is isosceles.

76. In a given triangle, an altitude is a bisector. Prove that the
triangle is isosceles.

77. In a given triangle, an altitudeis a median. Prove that the

triangle is isosceles.
75. Oneachsideofan equilateral triangle ABe, congruent segments
ABe, BCl and A\177 are marked, and-the points \177i', B\177, and C\" are

connected by lines. Prove that the triangleA\177B\177 \177is also equilateral.

79. Suppose that an angle, its bisector,and one side of this angle in
one triangle are respectivelycongruent to an angle, its bisector, and
one sideof this angle in another triangle. Prove that such triangles
are congruent.
$0. Prove that if two sides and the median drawn to the first of

them in one triangle are respectivelycongruentto two sides and the

median drawn to the first of them in another triangle, then such
trianglesare congruent.

$1. Give an example of two non-congruent trianglessuchthat two

sides and one angle of one triangle are respectivelycongruent to two

sides and one angle of the other triangle.
$\177.* On one side of an angle A, the segments\1774\177and A\177 are marked,
and on the othersidethe segments A\177 = \1774\177and A\177 = AC. Prove
that the linesB\177 \177and \177C meet on the bisect\177or of the angle A.
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88. Derive fr\177)m the previous problem a method of constructing the
bisectorusing straightedge and compass.

84. Prove that in a convexpentagon:(a) if all sides are congruent,
and all diagonals are congruent, then all interior angles are congru-
ent, and (b) if all sides are congruent, and all interior anglesare
congruent, then all diagonals are congruent.

85. Is this true that in a convex polygon, if.all diagonals are congru-
ent, and all interior angles are congruent, then all sides are congru-

ent?

7 Inequalities in triangles

41. Exterio\177 angles. The angle supplementary to an angleof
a triangle (or polygon) is called an exterior angle of this triangle
(polygon).

A
D

H

Figure 48 Figure 49

For instance (Figure 48), ZBCD,ZCBE,ZBAF are exterior

angles of the triangle ABC. In contrastwith the exterior angles, the
angles of the triangle (polygon) are sometimes called interior.

For each interior angleof a triangle (or polygon), one can con-
struct two exterior angles(by extending one or the other side of the
angle). Such two exterior angles are congruent since they arevertical.

42.Theorem. An exterior angle of a triangle is greater
than eachinterioranglenotsupplementary to it.

For example, let us prove that the exteriorangle BCD of AABC
(Figure 49) is greater than each of the interior angles A and B not \177

supplementary to it.

Throug.h the midpoint E of the sideBC, draw the median AE

\"and on the continuation of the medianmark the segment EF con-
gruent to AE. The point F will obviously lie in the interior .of the
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angle BCD. Connect-F with C by a segment. The triangles ABE
and EFC (shadedin Figure 49) are congruent since at the vertex
they have congruent angles enclosed between two respectively con-
gruent sides. From congruence of the triangles we concludethat the
anglesB and ECF, opposite to the congruent sides AE and
are 6ongruent too. But-the angle ECF forms a part of the exterior
angle BCD and is therefore smaller than ZBCD. Thus the angle B

is smaller than the angleBCD.
By continuing the side BC past the point C we obtain the exterior

angle ACH congruent to the angleBCD. If from the vertex B, we
draw the median to thesideAC and double the median by continuing
it past the sideAC, then we will similarly prove that the angleA is

smaller than the angle ACH, i.e. it is smallerthan the angle BCD.

B B

C D A

Figure 50 Figure 51

43. Corollary. If in a triangleoneangle is right or obtuse, then
the other two angles are acute.

Indeed, suppose that the angleC'-inAABC (Figure 50 or 51) is
right or obtuse. Then the supplementary to it exterior angle BCD
has to be right or acute. Therefore the angles A and B, which by the
theorem are smallerthan this exterior angle, must both be acute.

44. Relationshipsbetweensidesandanglesof a triangle.

Theorems. In any triangle

(1) the angles oppositeto congruentsidesare congruent;

(2) the angle opposite to a greater side is greater.
(1) If two sides of a triangle are congruent,then the triangle is

isosceles, and therefore the angles opposite to thesesideshave to be

congruent as the angles at the baseof an isosceles triangle (\36535).

(2) Let in AABC (Figure 52) the sideAB be greater than BC.
It is required to prove that the angle C is greater than the angle A.

On the greater side BA, mark the segmentBD congruent to the

smaller side BC and draw the linejoining D with C. We obtain an
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isosceles triangle DBC, which has congruentanglesat the base, i.e.

ZBDC = ZBCD. But the angleBDC,being an exterior angle with
respect to AADC, is greaterthan the angle A, and hence the angle
BCD is alsogreater than the angle A. Therefore the angle BCA
containing ZBCD as its part is greater than the angleA too.

A

Figure 52

45. The converse theorems. In any triangle

(t) the sides opposite to congruent angles are congruent;
(2) the side opposite to a greater angle is greater.
(1)Let in ZkABC the angles A and C be congruent(Figure53);

it isrequired to prove that AB -- BC.

c A c

Figure 53 Figure 54

Suppose the contrary is true,i.e.that the sides AB and BC are
not congruent. Then oneof these sides is greater than the other,
and thereforeaccordingto the direct theorem, one of the angles A

and C has to be greater than the other. But this contradicts the

hypothesis that ZA = ZC. Thus the assumptionthat AB and BC

are non-congruent is impossible. This leavesonly the possibility that
AB = BC.
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(2) Let in AABC-(Figure 54) the angle C be greater than the

angle A. It is required to prove that AB \177 BC.

Suppose the contrary is true, i.e. that AB is not greater than
BC. Then two cases canoccur:either AB = BC or AB < BC.

Accordingto the direct theorem, in the first case the angle C
would have been congruent to the angle A, and in the secondcasethe

angle C would have been smaller than the angleA. Either conclusion

contradicts the hypothesis, and therefore both casesare excluded.

Thus the only remaining possibility is AB \177 BC.

Corollary.

(1) In an equilateraltriangleall angles are congruent.

(2) In an equiangular triangle all sidesare congruent.

46. Proof by contradiction. The method we have just used
to prove the converse theorems is called proof by contradiction,
or reductio ad absurdurn.In the beginning of the argument the
assumption contrary to what is required to prove is made. Then by

reasoning on the basis of this assumption onearrivesat a contradic-

tion (absurd). This result forces one to rejectthe im'.tial assumption

and thus to accept the one that was required to prove. This way of
reasoning'is frequently used in mathematical proofs.

47'. A remark on converse theorems. It isa mistake, not

uncommon for beginning geometry students, to assumethat the corn

verse theorem is automatically established whenever the validity of

a direct theorem has been verified. Hencethe falseimpressionthat

proof of converse theorems is unnecessary at all. As it can' be shown
by examples, like the onegiven in \36530, this conclusion is erroneous..
Therefore converse theorems, when they are valid, require separate

proofs.

However; in the case'ofcongruenceornon-congruence of two sides

of a triangle.ABC, e.g. the sidesAB and BC, only the following
three cases can occur:

AB = BC, AB > BC, AB < BC.

Each of these three cases excludes the other two: say, if the first

case AB = BC takes place,then neither the 2nd nor the 3rd case
is possible.In the theorem of \36544, we have considered all the three
cases and arrived at the following respective conclusions regarding
the oppositeanglesC and A:

ZC=/A, ZC>ZA, ZC<ZA.
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Each of these conclusions excludes the other two. We have also seen

in \36545 that the converse theorems are true and can be easily proved

by reductio ad absurdura.

In general, if in a theorem,orseveral theorems, we address all pos-
sible mutually exclusivecases(which can occur regarding the magniq
tude of a certain quantity or disposition of certain parts of a figure),
and it turns out that in these cases we arrive at mutually exclusive

conclusions (regarding some o\177her quantities or parts of the figure),
then we can claima priorithat the converse propositions also hold
true.

We will encounter this rule of' convertibility quite often.
48\177 Theorem. \234n a triangle\177 each side is smaller than the

sum of the othertwo sides.

If we take a side which is not the greatest one in a triangle, then
of courseit will be smaller than the sum of the other two sides.

Therefore we need to prove that eventhe greatest side of a triangle
is smaller than the sum of the othertwo sides.

In AABC (Figure 55), let the greatestsidebeAC. Continuing

the side AB past B mark on it the segmentBD = BCand draw

DC. Since ABDC is isosceles, then /D -- ZDCB.Therefore the

angle D is smaller than the angleDCA, and hence in AADC the

side AC is smallerthan AD (\36545), i.e. AC \177 AB d- BD. Replacing
BD with BC we get

AC < AB + BC.

Corollary. From both sidesofthe obtainedinequality, subtract

AB or BC:

AC- AB < BC, AC- BC< AB.

Reading these inequalities from right to left we see that each of the
sidesBC and AB is greater than the difference of the other two sides.

Obviously, the same can also be saidabout the greatestsideAC, and

therefore in a triangle, each side is greaterthan the difference of \177he

other two sides.

Remarks. (1) The inequality describedin the theorem is often
called the triangle inequality.

(2) When the point B lies on the segmentAC, the triangle in-

equality turns into the equality AC = AB + BC. More generally, if

three points lie on the same line (and thus do not form a triangle),
-\177hen the greatest of the three segments connecting thesepointsis the

sum of the other two segments. Thereforefor any threepointsit is



7. Inequalities in triangles 39

still true that the segmentconnectingtwo of them is smaller
than or congruent to the sum of the othertwo segments.

A

D c
B

A E

Figure 55 Figure 56

49. Theorem. The line segmentconnectingany two points

is smaller than any broken line connectingthesepoints.
If the broken line in question consists of only two sides, then the

theorem has already been proved in \36548. Consider the case when the
broken line consistsof morethan two sides. Let AE (Figure 56) be
the linesegmentconnectingthe pointsA and E, and let ABCDE be
a brokenlineconnectingthe samepoints.We are required to prove
that AE is smallerthan the sum AB + BC + CD + DE.

Connecting A with C and D and using the triangleinequality we

find:

AE _< AD + DE, AD < AC + CD, AC _< AB + BC.

Moreover, these inequalities cannot t-urn into equalities all at once.
Indeed, if this happened,then (Figure57) D would lie on the segment
A/\177, C on AD, B on AB, i.e. ABG'DEwould not be a broken line,
but the straightsegmentAE. Thus adding the inequalities termwise

.,.\177 AE = AD+DE /\177 AD=AC+CD\177 / \\c
E A

AC=AB+BC

B C D

Figure 57

and subtracting AD and AC from both sides we get

AE < AB + BC+ CD+ DE.
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50. Theorem. If two sides of one triangle are congruent
respectivelyto two sides of another triangle, then:

(1) the greater angle containedby these sides is opposed
to the greater side;

(2) vice versa, the greater of the non-congruent sides is
opposedto the'greater angle.

D

B B'

A C A' C'

Fiqure 58

(1) In AABC and AA\177B'C', we are given:

AB = A'B', AC = A'C', ZA > ZA'.

We are required to prove that BC > B'C( Put AA'B'C' onto

AABC in a way (shownin Figure58) such that the side A'C' would'
coincidewith AC. Since/A' </A, then the side A'B' will lie inside

the angle .4. Let ZkA'B'C' occupy the positionAB\"C (the vertex

B\" may fall outside or insideofAABC, oron the side BC, but the

forthcoming argument applies to allthesecases).Draw the bisector

AD of the angle BAB\"and connectD with B'( Then we obtain two
triangles ABD and DAB\" which are congruent because they have a
commonsideAD, AB = AB\" by hypothesis, and ZBAD = ZBAD\"

by construction. Congruence of the triangles implies BD =
From/kDCB\"we now derive: B\"C < B\"D + DC (\36548). Replacing

B\"D with BD we get

B\"C < BD+ DC, and hence B'C' < BC.

(2) Suppose in the sametrianglesABCand WB'C' we are given
that AB = A'B', AC = A'C' and BC > B'C'; let us prove that

/A >/A \177.

Assume the contrary, i.e. that the ZA is not greaterthan /A t.

--Then two cases can occur: either ZA =/A' or /A < /At. In the
first case the triangles would have been congruent (by the SAS-test)
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and thereforethesideBCwould have been congruent to B\177C \177,which

contradicts the hypotheses. In the second case the sideBC would

have been smaller than B\177C \177by part (1) of the theorem, which con-
tradictsthe hypotheses too. Thus both of these cases are excluded;
the only case that remains possible is ZA > ZA \177.

EXERCISE$

86. Can an exterior angle of an isoscelestriangle be smaller than the

supplementary interior angle? Considerthe caseswhen the angle is:

87. Can a triangle have sides: (a) 1, 2, and 3 cm (centimeters) long?
(b) 2,3,and.4cm long?

88. Can a quadrilateral have sides: 2, 3,4, and 10 cm long?

Prove theorems:

89. A side of a triangle is smaller than its semiperimeter.
90.A median of a triangle is smaller than its semiperimeter.
91.*A median drawn to a side of a triangle is smaller than the

semisum of the other two sides.

Hint: Double the median by prolongingit past the midpoint of the

first side.

92. The sum of the mediansofa triangle is smaller than its perimeter
but greater than its semi-perimeter.

90 \370. The sum of the diagonals of a quadrilateralis smaller than its

perimeter but greater than its semi-perimeter.
94{. The sum of segments connecting a point insidea triangle with

its vertices is smaller than the semiperimeterof the triangle.

95.* Given an acute angle XOY and an interiorpointA. Find a

point B on the side OX and a pointConthesideOY such that the

perimeter of the triangle ABe is minimal.

Hint: Introduce points symmetric to 24 with respect to the sides of
the angle.

8 Right triangles

lineis smaller than any

to this 'line.

51. Comparative length oftheperpendicularand a slant.

Theorem. The perpendicular dropped from any point to a
slant drawn from the same point
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Let AB (Figure 59) be the perpendiculardroppedfrom a point

A to the line MN, and AC be any slant drawn from the same point
A to the line MN. It is required to show that AB < AC.

In AABC, the angleB is right, and the angle C is acute (\36543).

Therefore XC < ZB, and hence AB \177 AC, as required.

Remark. By \"the distance from a point to a line,\" one means the
shortesidistancewhich is measured along the perpendicular dropped
from this point to the line.

M

A

N

A

B D E

Figure 59 Figure 60

N

52. Theorem. If the perpendicular and some slants are
drawn to a line from the same point autside this line,then:

(1) if the feet of the slants are the same distanceaway

from the foot of the perpendicular, then such slantsarecon-
gruent;

(2) if the feet of two slants are not the same distance
away from the foot of the perpendicular, then the slant
whose foot is farther away from the foot of the perpendicu-
lar is greater.

(1) Let AC and AD (Figure 60) be two slants drawn frpm a
point A to the line MN and such that their feet C and D are the

same distance away from the foot B of the perpendicular AB, i.e.
CB = BD.It isrequired to prove that AC = AD.

In the trianglesABCand ABD, AB is a common side, and
besidethisBC = BD (by hypothesis) and LABC = LABD (as right
angles).Thereforethesetriangles are congruent, and thus AC = AD.

(2) Let AC and AE (Figure 59) be two slants drawn from the
point A to the line MN and such that their feet are-notthe same

--distance away from the foot of the perpendicular;for instance, let

BE > BC. It is requiredto prove that AE



$. \177igh\177 triangles \1773

Mark BD = BC and'draw AD.' By part (1),AD = AC. Com-

pare AE with AD. The angle ADE is exterior with respect to
\177ABD and therefore it is greater than the right angie. Therefore

the angle ADE is obtuse,and hence the angle AED must be acute
(\36543). It follows that ZADE > ZAED, therefore AE > AD, and

thus AE > AG.

53. The converse theorems. If someslantsand theper-

pendicular are drawn to a line from the same point outside
thisline,then:

(1) if two slants are congruent, then their feet are the
samedistance away from the foot of the perpendicular;

(2) if two slar\177ts are not congruent, then the foot of the
greateroneis farther away from the foot of the perpendic-
ular.

We leave it to the readers to provethesetheorems(by the method

of reductio ad absurdurn).
54. Congruence tests for r\177ght triangles. Since in right

triangles the anglescontainedby the legs are always congruent as
right angles, then right trianglesarecongruent:

(1) if the legs of one of them are congruentrespectively to the legs

of the other;
(2) if a leg and the acute angle adjacent to it in one triangle are

congruentrespectively to a leg and the acute angle adjacentto it in
the other triangle.

These two tests require no specialproof,since they are particular

cases of the general $AS- and ASA-t\177StS. Let us prove the following
two tests which apply to right triangles only.

55. Two tests requiring specialproofs.
Theorems. Two right triangles are congruent:

(1) if the hypotenuseand an acuteangleofonetriangle

are congruent to respectively the hypotenuse and an acute
angleof theother.

(2) if the hypotenuse and a leg of one triangleare con-
gruent respectively to the hypotenuse and a leg of the other.

(1)Let ABC and A\177B\177Cx (Figure 61) be two right triangles such
that AB \177- AiB1 and ZA = ZA\177. It is required to prove that these
trianglesare congruent.

\337Put AABC onto ZkA\177BxCi in a way such that their congruent
hypotenuses coincide. By congruence of the angles A and A\177, the

leg AC 'will go along A1C1. Then, if we assume that the point C
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occupies a position 6'2 or 6'3 different from 6'1, we will have two
perpendiculars (B16'1and ]31C2,or ]316'1and B1C3) dropped from

the same point B\177 to the line A\1776 '\177.Since this is impossible (\36524), we

conclude that the point 6' will merge with 6'1.
B

A C

B I

A, C\177C, C3

B

A C

B!

A\177 A\177 A\177 C\177

Figure 61 Figure 62

(2) Let (Figure62),in the right triangles, it be given: AB =
andBC = B\177Ci. It is required to prove that the trianglesarecongru-

ent. Put AABC onto AA1,B\177C\177 in a way such that their congruent
legsBC and B\177C\177 coincide. By congruence of right angles, the side
6'A will go along C\177A\177. Then, if we assume that the hypotenuse AB
occupiesa positionA\177B\177 or A\177B\177 different from A\177Bi, we will have
two congruent slants (A\177B\177 and A\177B\177, or A\177B\177 and AsB\177) whose

feet are not the samedistanceaway from the foot of the perpendic-
ular B\177C\177. Since this is impossible (\36553) we conclude that AB will
be identified with A\177Bi.

EXERCISES

Prove theorems:

96. Each leg of a right triangle is smaller than the hypotenuse.
97. A right triangle can have at most one axisof symmetry.

98. At most two congruent slants to a given line can be drawn from
a given point.
99.' Two isosceles triangles with a common vertex and congruent
lateralsidescannot fit one inside the other.

100. The bisectorof an angle is its axis of symmetry.
101. A triangle is isosceles if two of its altitudes are congruent.
102.A median in a triangle is equidistant from the two vertices not

-\"lying on it.

105.' A line and a circlecan have at most two common points.
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9 Segment and angle bisectors

56. The perpendicular bisector, i.e. the perpendicular to a seg-
menterectedat the midpoint of the segment, and the bisector of an
anglehave very similar properties. To see the resemblancebetter we

will describe the properties in a parallel fashion.

(1) If. a point (K, Fig-

ure 63) lies on the perpen-
dicular (MN) erected at the
midpointofa segment(AB),

then the point is the same
distance away from the end-

points of the segment (i.e.
\177 = \177).

Since MN J_ AB and AO =

OB, AK and KB are slants to

AB, and their feet 'are the same
distanceaway from the foot of
the perpendicular. Therefore
KA = KB.

(1)if a point( K , Figure

64) lies on the bisector (OM)

of an angle (AOB), then the
point is the same distance
away from the sides of the
angle (i.e. the perpendiculars
KD and KC are congruent).

Since OM bisects the angle,
the right triangles OCK and
ODK are congruent, as they

have the common hypotenuse
and congruent acute angles at
the vertex O. Therefore KC =
KD.

A
N

M

Figure 63

o

c D

A B

Figure 64

(2) The converse theorem.
If a point (K,Figure 63) is the

same distance away from
the endpoints of the seg-
mentAB (i.e. if KA = KB),
then the point lies on the
perpendiculartoAB passing

through its midpoint.

(2) The converse theorem.
if an interior point of an
angle (K, Figure 64) is the
same distance away from its
sides(i.e. if the perpendicu-

lars ITC and KD are congruent)
then it lieson the bisector

of this angle.
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Through K, draw the line
MN _1_ AB. We get two right
triangles KAO and KBO which

are congruent as having congru-
ent hypotenuses and the com-
mon leg KO. Therefore the line
MN drawn through K to be
perpendicular to AB bisects it.

Through O and K, draw

the line OM. Then we get
two right triangles OCK and

ODK which are congruent as
having the commonhypotenuse

and the congruent legs CK and
DK. Hencethey have congru-

ent angles at the vertex O, and
thereforethe line OM drawn to

pass through K bisectsthe angie
AOB.

57'.Corollary. From the two proven theorems (direct and con-
verse)onecan also derive the following theorems:

If a point doesnot lie on

the perpendicular erected at the
midpoint of a segmentthen the

point is unequal distances'away
from the endpoints of this seg-
ment.

If an interior point of an an-
gle doesnot lieon the ray bisect-

ing it, then the point is unequal

distances away from the sides of
this angle.

We leave it to the readers to prove these theorems(using the

method reductio ad absurdurn).

58. Geometric locus. Thegeometriclocusof points satis-

fying a certain condition is the curve (or the surface in the space)
or, more generally, the set of points, which contains all the points
satisfying this condition and contains no points which do not satisfy

it.

For instance, the geometric locus of points at a given distance r

from a given point C is the circleof radius r with the center at the
point C. As it follows from the theorems of \36556, \36557:

The geometric locus of points equidistant from two given points

is the perpendicular to the segment connectingthesepoints,passing

through the midpoint of the segment.
The geometriclocusofinteriorpointsofan angle equidistant from

its sides is the bisector of this angle.
59.Theinversetheorem.If the hypothesis and the conclusion

of a theoremarethe negations of the hypothesis and the conclusion
of another theorem,then the former theorem is called inverse to the
latterone. For instance, the theorem inverse to: \"if the digit sum
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is divisible by 9, then the number is divisible by 9\" is: \"if the digit

sum is not divisible by 9, then the number is not divisible by 9.\"

It is worth mentioningthat the validity of a direct theorem does
not guarantee the validity of the inverse one: for example, the inverse
proposition\"if not every summand is divisible by a certain number

then the sum is not divisible by this number\" is false while the direct
proposition is true.

The theorem described in \36557 (both for the segment and for the
angie)is inverse to the (direct) theorem described in \36556.

60. Relationships between the theorems: direct, con-
verse, inverse\177 and contrapositive. For better understanding
of the relationshipletusdenotethe hypothesis of the direct theorem

by the letter A, and the conclusion by the letter' B, and expressthe
theorems concisely as:

(1) Direct theorem: if A is true, then B is true;
(2) Converse theorem: if/\177 is true, then A is true;
(3) Inverse theorem: if A is false, then B is false;
(4) Contrapositive theorem: ifB isfalse, then A is false.

Considering these propositions it is not hard to noticethat the

first one is in the same relationship to the fourth as the second one to
the third. Namely, the propositions (1) and (4) can be transformed
into each other, and so can the propositions (2)and (3). Indeed,from

the proposition: \"if A is true, then B is true\" it follows immediately

that \"if B is false, then A is false\" (since if A were true, then by

the first proposition B would have been true too); and vice versa,

from the proposition: \"if B is false, then A is false\" we derive: \"if

A is true, then B is true\" (since if B were false, then A would have
been false as well). Quite similarly, we can check that the second
proposition follows from the third one, and vice versa.

Thus in order to make sure that all'the four theorems are valid,

there is no need to prove each of them separately, but it sufficesto
prove only two of them: direct and converse,or directand inverse.

EXERCISES

10J. Prove as a direct theoremthat a pointnot lying on the perpen-

dicular bisector of a segmentis not equidistant from the endpoints

of the segment; namely it is closerto that endpoint which lies on the
same side of the bisector.
105.Prove as a direct theorem that any interior point of an angle
which does not lie on the bisector is not equidistant.fromthe sides
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of the angle.
106. Provethat two perpendiculars to the sides of an angle erected
at equal distances from the vertex meet on the bisector.
107. Prove that if A and A', and B and B\177are two pairs of points
symmetric about somelineX\276, then the four points A, A \177,B \177,B lie
on the same circle.
108. Find the geometric locus of vertices of isosceles triangles with

a given base.

109. Find the geometric locusof the verticesA of triangles ABC

with the given base BC and such that/B >/C.

110. Find the geometriclocusofpointsequidistant from two given

intersecting infinite straight lines.
111.*Findthe geometric locus of points equidistant from three given
infinite straight lines,intersectingpairwise.

112. For theorems from \36560: direct, converse, inverse, and contra-
positive, compare in which of the following four cases each of them
is true: when (a) A is true and B is true, (b) A is true but B is false,
(c) A is false but B is true? and (d) A is false and B is false.
113. By definition, the negation of a proposition is true whenever

the proposition is false, and false whenever the propositionis true.
Statethe negation of the proposition: \"the digit sum of every mul-
tiple of 3 is divisible by 9.\" Is this proposition true? Is its negation
true?
11J. Formulate affirmatively the negations of the propositions:
(a) in every quadrilateral, both diagonals lie inside. it; (b) in ev-
ery quadrilateral,there is a diagonal that lies inside it; (c) there
is a quadrilateralwhose both diagonals lie inside it; (d) there is a
quadrilateralthat has a diagonal lying outside it. Which of these

propositions are true?

10 Basic construction problems

61.Preliminaryremarks.Theorems we proved earlier allow
us to solve someconstruction problems.Note that in elementary

geometry one considers those constructionswhich can be performed
6

using only straightedgeand compass.
62.Problem 1. To. construct a triangle with the given

three sidesa, b and c (Figure 65).

6As we will see, the use of the drafting triangle, which can be allowed for

saving time in the actual construction, is unnecessaryin principle.
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On any line MN, mark the segment CB congruent to oneofthe
given sides, say, a. Describe two arcs centered at the pointsC and

B of radii congruent to b and to c. Connect the point A, where these
arcs intersect, with B and with C. The r\177quired triangle is ABC.

A

M N

C B

Figure 65

Remark. For three segmentsto serve as sides of a triangle, it is
necessary that the greatest one is smaller than the sum of the other
two (\36548).

63. Problem 2. To construct an angle congruentto the
given angle ABC and such that one of the sides is a given
lineMN, and the vertex is at a point 0 given on the line
(Figure 66).

c Q

, b

E

B A M P N

Fiqure 66

Between the sides of the given angle,describean arc EF of any
radius centered at the vertexB, then keeping the same setting of the
compass place its pin leg at the point O and describe an arc P(\177.

Furthermore, describe an arc ab centered at the pointP with the ra-

dius equal to the distance betweenthe pointsE and F. Finally draw
a line through O and the point/\177 (the intersection of the two arcs).
The angleROPiscongruent to the angle ABC because the triangles
ROP and FBE are congruent as having congruent respective sides.

64. Problem 3. To bisecta given angle (Figure 67), or in
other words, to construct the bisectorof a given angle or to

draw its axis of symmetry.
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Between the sides of the angle, draw an arc DE of arbitrary
radius centered at the vertexB. Then, setting the compass to an
arbitrary radius, greater however than half the distance between D
and E (seeRemark to Problem 1), describe two arcs centered at D
and E so that they intersect at some point F. Drawing the line BF

we obtain the bisector of the angleABC.
For th e proof, connect the point F with D and E by segments. We

obtain two triangles BEF and BDF which are congruent since BF
is theircommon side, and BD = BE and DE - EF by construction.

The congruence of the triangles implies: ZABF =/CBF.
c

E

A :
C

E
: B

Figure 67 Figure 68

65. Problem 4. From a given'pointC on thelineAB, to

erect a perpendicular\"to this line (Figure 68).
On both sides of the point C on the line AB, markcongruent

segments CD and CE (of any length). Describetwo arcs centered

at D and E of the sameradius (greaterthan CD) so that the arcs
intersect at a point F. The line passing through the points C and F
will be the requiredperpendicular.

Indeed, as it is evident from the construction,the point F will

have the same distance from the points D and E; therefore it will lie

on the perpendicular to the segmentAB passing through its midpoint

(\36556). Since the midpoint is C, and there is only one line passing

through C and F, then FC \361 DE.

66. Problem 5. From a given point A, to drop a perpen-
dicular to a given lineBC(Figure 69).

Draw an arc of arbitrary radius (greater however than the dis-

tance from A to BC) with the center at A so that it intersects BC
at somepointsD and E. With these points as centers, draw two

arcs of the same arbitrary radius (greater however than \253DE) so

'-that they intersect at some point F. The line AF is the required
perpendicular.
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Indeed,asit ise\276ident from the construction, each of the points

\1774 and F is equidistant from D and E, and all such points lie on
the perpendicular to the segmentAB passing through its midpoint

(\36558).

A

A B

c

Figure 69 Figure 70

67. Problem 6. To draw the perpendicularto a given seg-

ment AB through its midpoint (Figure 70); in other words, to

construct the axis of symmetry of the segmentAB.
Draw two arcs of the same arbitrary radius (greaterthan \253AB),

centered at A and B, so that they intersecteachother at some points

C and D. The lineCD is the required perpendicular.

Indeed, as it is evident from the construction, each of,the points
C and D is equidistantfrom A and B, and therefore must lie on the
symmetry axis of the segment AB.

Problem ?. To bisecta givens'traightsegment(Figure 70).

It is solved the same way as the previous problem.

68. Example of a more complex problem. Thebasiccon-
structions allow one to solve more complicated construction prob-
lems.As an illustration, consider the following problem.

Problem. To construct a triangle with a given base b, an angle

er at the ba.se, and the 'sum s of the other two sides (Figure 71). To
workout a solutionplan, suppose that the problem has been solved,
i.e. that a triangle ABC has been found such that the baseAC = b,

ZA = c\177and AB + BC = s. Examine the obtaineddiagram. We

know how to construct the side AC congruentto b and the angle A

congruent to c\177. Therefore it remains on the other side of the angle
to find a point B such that the sum AB + BC is congruent to s.
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Continuing AB past B, mark the segment AD congruentto s. Now

the problem reduces to finding on AD a pointB which would be the

same distance away from C and D. As we know (\36558), such a point

must lie on the perpendicularto CD passing through its midpoint.

The point will be found at the intersection of this perpendicular with
AD.

b

A

Figure 71

Thus, here is the solutionof theproblem:construct (Figure 71)

the angle A congruent to c\177. On its sides, mark the segments AC = b

and AD = s, and connect the pointD with C. Through the midpoint

of CD, construct the perpendicularBE. Connect its intersection

with AD, i.e. the point B, with C. The triangle ABC is a solution
of the problemsinceAC - b, ZA = a and AB q-BC = s (because
BD = BC).

Examiningthe constructionwe notice that it is not always pos-
sible. Indeed,if the sum s is too small compared to b, then the

perpendicular EB may miss the segmentAD (or intersect the con-
tinuation of AD past A or past D). In this case the construction
turns out impossible. Moreover, independently of the construction
procedure,onecan see that the problem has no solution if s < b or

s = b, because there is no trianglein which the sum of two sides is
smallerthan or congruent to the third side.

In the casewhen a solution exists, it turns out to be unique, i.e.

there exists only one triangle, 7 satisfying the requirements of the

7Thereare infinitely many triangles satisfying the requirements ofthe problem,

but they are all congruent to each other, and so it is customary to say that the

solution of the problem is unique.



10. Basic construction problems 53

problem, since the perpendicularBE can intersect AD at one point
at most.

69. Remark. The previous example shows that solution of a
complex constructionproblemshould consist of the following four
stages.

(1) Assuming that the problemhas been solved, we can draft
the diagram of the requiredfigure and, carefully examining it, try
to find those relationshipsbetweenthe given and required data that
would allow one to reducethe problem to other, previously solved

problems. This most important stage,whose aim is to work out a
plan of the solution,is called analysis.

(2) Once a plan has been found, the construction following it
can be executed.

(3) Next,to validate the plan, one shows on the basis of known

theorems that the constructed figure does satisfy the requirements
of the problem. This stage is called synthesis.

(4) Then we ask ourselves: if the problem has a solution for

any given data, if a solution is uniqueor there are several ones,

are there any special caseswhen the construction simplifies or, on
the contrary, requiresadditionalexamination. This solution stage is
called research.

When a problemisvery simple, and there is no doubt about possi-
bility of the solution, then one usually omits the analysis and research

stages, and provides only the constructionand the proof. This was
what we did describingour solutionsof the first seven problems of

this section; this is what we are going to do later on whenever the
problems at hand will not be too complex.

EXERCISES

Construct:

115. The sumof two, three, or more given angles.

116. The differenceof two angles.

117. Two angles whose sum and differenceare given.

115. Divide an angle into 4, 8, 16congruent parts.

1 ! 9. A line in the exterior of a given anglepassingthrough its vertex -

and such that it would form congruent angleswith the sides of this
angle.

120. A triangle: (a) given two sides and the anglebetweenthem\177

(b) given one side and both angles adjacentto it\177 (c) given two sides
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and the angle opposit\177 to the greater one of them; (d) given two fides

and the angle opposite to the smalleroneof them (in this case there
can be two solutions, or one,ornone).
121. An isosceles triangle: (a) given its base and another side;
(b) given its base and a base angle; (c) given its base angle and
the opposite side.
122. A right triangle: (a) given both of its legs;(b) given one of the
legs and the hypotenuse;(c) given one of the legs and the adjacent
acuteangle.

123. An isosceles triangle: (a) given the altitudeto the base and

one of the congruent sides; (b) given the altitude to the base and the
angleat the vertex; (c) given the base and the altitude to another

side.

12J. A right triangle, given an acute angleand the hypotenuse.

125. Through an interior point of an angle,constructa line that

cuts off congruent segments on the sidesof the angle.
126.Through an exterior point of an angle, construct a linewhich

would cut off congruent s\177gments on the sides of the angle.

127. Find two segments whose sum and difference are given.
128. Divide a given segment into 4, 8, 16 congruentparts.
129.On a given line, find a point equidistant from two given points

(outside the line).

130. Find a point equidistant from th\177 three vertices of a given
triangle.
131. On a given line intersecting the sides of a given angle, find a

point equidis. tant from the sides of the angle.
132.Find a point equidistant from the three sidesof a given triangle.

133. On an infinite line AB, find a point C such that the rays CM
and CN connecting C with two given points M and N situatedon
the same side of AB would form congruent angles with the rays CA

and CB respectively.

15J. Construct a right triangle,given one of its legs and the sum of
the otherlegwith the hypotenuse.

135. Construct a triangle, given its base, one of the angles adjacent
to the base,and the difference of the other two sides (considertwo

cases: (1) when the smaller of the two angles adjacent to the base is
given; (2) when the greater one is given).

136. Construct a right triangle, given. one of its legs and the differ-

ence of the other two sides.
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137. Given an angle A. and two points B and C situated one on one

side of the angleand oneonthe other,find: (1) a point M equidistant
from the sidesof the angleand such that MB = MC; (2) a point
N equidistantfromthe sidesof the angle and such that NB = BC;
(3) a pointP such that each of the points B and C would be the

same distance away from A and P.

138. Two towns are situated near'a straightrailroadline.Findthe

position for a railroad station so that it is equidistantfrom the towns.

139. Given a point A on one of the sides of an angle B. On the
othersideof the angle, find a point C such that the sum CA + CB

is congruent to a given segment.

11 Parallel lines

70. Definitions. Two lines are called parallel if they lie in

the same plane and do not intersectoneanother no matter how far

they are ext.endedin both directions.
In writing, parallel lined are denoted by the symbol 1[.Thus, if

two lines AB and CD are parallel, one writesABtlCD.
Existence of parallel lines is established by the following theorem.

T!. Theorem. Two perpendiculars (AB and CD, Figure72)

to the same line (MN) cannot intersect no matter how far

they are extended.

c

B D

Figure 72

Indeed, if such perpendiculars could intersectat some point P,

'then two perpendiculars to the lineMN would be dropped from this
point, which is impossible(\36524). Thus two perpendiculars to the
same line are parallelto each other.
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72. Names of anglesformed by intersection of two lines
by a transversal. Let two lines AB and CD (Figure 73) be inter-
sectedby a third line MN. Then 8 angles are formed (we labeled

them by numerals) which carry pairwise the following names:

corresponding angles: I and 5, 4 and 8,2 and 6, 3 and 7;

alternate angles: 3 and 5, 4 and 6 (interior);I and 7, 2 and 8

(exterior);
same-side angles: 4 and 5, 3 and 6 (interior);i and 8, 2 and 7

(exterior).

A

Figure 73

73. Tests for parallel lines. When two lines (AB and CD,

Figure 74) are intersected by a third line (MN), and it turns
out that:

(1) some correspondinganglesare congruent,or

(2) some alternate angles are congruent, or
(3) the sum of somesame-sideinterior or same-side

exterior angles is 2d\177

then these two lines are parallel.
Suppose,for example, that the corresponding angles 2 and 6 are

congruent.We are required to show that in this case ABII CD. Let us

assume the contraxy, i.e. that the linesAB and CD axe not parallel.
Then these linesintersectat some point P lying on the right of MN
or at some point P' lying on the left of MN. If the intersection is at
P, then a triangle is formed for which the angle 2 is exterior,and the
angle6 interiornot supplementary to it. Therefore the angle 2 has to
be greater than the angle 6 (\36542)i which contradicts the hypothesis.
Thus the lines AB and CD cannot intersectat any point P on the
right of MN. If we assumethat the intersectionisat thepoint
then a triangle is formed for which the angle4, congruent to the



1I. Par\177lel lines 57

angle 2, is interior and the angle 6 is exterior not supplementary to
it. Then the angle 6 has to be greater than the angle4, and hence
greater than the angle 2, which contradicts the hypothesis.Therefore
the lines AB and CD cannot intersect at a point lying on the left

of MN either. Thus the linescannot intersect anywhere, i.e. they
are parallel. Similarly,one can prove that AB]ICD if Z1 = Z5, or
L3= L7, etc.

A

/7 D A E C B
N

Figure 74 Figure 75

Suppose now that \1774+Z5 = 2d. Then we conclude that Z4 = Z6
sincethe sum of angie 6 with the angle 5 is also2d.Butif Z4 = Z6,

then the lines AB and CD cannot intersect, since if they did the
angles4 and 6 (of whichonewould have been exterior and the other
interior not supplementary to it) could not be congruent.

74. Problem. Through a given point IVY (Figure 75), to construct
a line parallel to a given line AB.

A simple solution to this problemconsistsofthe following. Draw

an arc CD of arbitrary radius centeredat the pointM. Next, draw

the arc ME of the same radiuscenteredat the point C. Then draw

a small arc of the radius congruent to ME centered at the point C
sothat it intersects the arc CD at some point F. The lineMF will

be parallel to AB.

M

Figure 76
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To prove this, draw the auxiliary line MC. The angles1 and

2 thus formed are congruent by construction (becausethe triangles
EMCand MCF are congruent by the SSS-test), and when alternate

angles are congruent, the lines are parallel.
Forpractical construction of parallel lines it is also convenientto

usea drafting triangle and a straightedge as shown in Figure 76.

A B c

Figure 77 Figure 78

75. The parallel postulate. Through a given point\177 one

cannot draw two diffe\177,ent lines parallel to the same line.

Thus, if (Figure 77) CEIIAB, then no other line CE \177passing

through the point C can be parallelto AB,i.e.CE\177will meet AB
when extended.

It turns out impossibleto prove this proposition, i.e. to derive it
as a consequenceof earlieraccepted axioms. It becomes necessary
therefore to accept it as a new assumption (postulate, or axiom).

C /F DN

M

B

D

Figure 79 Figure 80

76. Corollary. (1) /f (Figure77), and a third line CE'
intersects one of these two parallel lines, then it intersects the other
as well, because otherwise there would be two different lines CE and

CE' passing through the samepoint C and parallel to AB, which is
impossible.
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(2) If each of two lines a and b (Figure 78) is parallelto the same

third line c, then they are parallel to eachother.
Indeed,if we assume that the lines a and b intersect at some point

M, there would be two different lines passing through this point and
parallelto c, which is impossible.

77. Angles formed by intersection of parallel lines by a

transversal.

Theorem (converse to Theorem of \36573). If two parallel lines
(AB and CD, Figure79) are intersected by any line (MN),
then:

(1) correspondinganglesare congruent;
(2) alternate angles are congruent;

(3) the sum of same-sideinterioranglesis 2d;

(4) the sum of same-side exterior angles is 2d.
Let us prove for example that if AB ]CD,then the corresponding

angles a and b are congruent.

Assume the contrary, i.e. that theseangles are not congruent (let
us s\177y Z1 > Z2). Constructing ZMEB \177= L2 we then obtain a line
A\177B \177distinct from AB and have therefore two lines passingthrough

the point E and parallel to the samelineCD. Namely, AB CD by

the hypothesis of the theorem,and A\177B \177CD due to the congruence
of the corresponding angles MEB \177and 2. Since this contradicts the
parallel postulate,then our assumptionthat the anglesi and 2 are

not congruent must be rejected; we are left to accept that Z1 = Z2.
Other conclusionsof the theorem.Can be proved-the same w\177y.

Corollary. A perpendicular to one of two parallel lines is per-
pendicular to the other one as well.

Indeed, if AB CD (Figure 80) and ME \361 AB, then firstly ME,
which intersects AB, will also intersect CD at some point F, and
secondly the corresponding angles 1 and 2 will be congruent. But
theanglei isright, and thus the angle 2 is also right,i.e.ME \361 CD.

78. Tests for non-parallel lines. From the two theorems: di-

rect (\36573) and its converse (\36575), it follows that the inverse
theorems also hold true,i.e.:

If two lines are intersected by a third one in a way such that

(1) corresponding angles are not congruent,or (2) alternate interior

angles are not congruent, etc., then the two lines are not parallel;

If two lines are not paralleland are intersected by a third one,
then (1) correspondinganglesarenotcongruent, (2) alternate interior

angles are not congruent,etc. Among all these tests for non-parallel
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lines (which are easily proved by reductio ad absurdurn), the following

one deserves special attention:
If the sum of two same-side interior angles (1 and 2, Fig-

ure 81)differsfrom2d, then the two lines when extended far
enough will intersect,since if these lines did not intersect, then
they would be parallel, and then the sum of same-sideinteriorangles
would be 2d, which contradicts the hypothesis.

Figure 81

D

This proposition (supplemented by the statementthat the lines

intersect on that side of the transversal onwhich the sum of the same-
side interior anglesis smaller than 2d) was accepted without proof
by the famous Greek geometer Euclid (who lived in the 3rd century
B.C.) in his Elementsof geometry, and is known as Euclid's pos-
tulate. Later the preferencewas given to a simpler formulation: the
parallel postulatestatedin \36575.

A

E F G

A E

Figure 82 Figure 83

Let us point out two more tests for non-parallelism which will be
usedlateron:

(1)A perpendicular (AB, Figure 82) and a slant (CD) to
-'-thesame line(EF)intersecteach other, because the sum of

same-side interioranglesi and 2 differs from 2d.
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(2) Two lines .(AB and CD, Figure 83) perpendicular to two

intersecting lines (FE and FG) intersect as well.
Indeed,if we assume the contrary, i.e. that AB]]CD, then the

lineFD, being perpendicular to one of the parallel lines (CD), will

be perpendicular to the other (AB), and thus two perpendiculars

from the same point F to the sameline AB will be dropped, which
is impossibIe.

79. Angleswith respectivelyparallelsides.
Theorem. If the sides of one angle are respectivelyparallel

to the sides of another angle, then such angles are either
congruent or addup to 2d.

Figure 84

Consider separately the following three cases (Figure 84).

(1) Let the sidesof the angle 1 be respectively parallel to the
sides of the angle2 and, besidethis,\177he directions of the respective

sides, when counted away from the vertices (as indicated by arrows
on the diagram), happen to be the same.

Extending one of the sides of the angle 2 until it meets the non-

parallel to it side of the angle 1, we obtair\177 the angle 3 congruent
to each of the angles1 and 2 (as corresponding angles formed by a
transversalintersectingparallel lines). Therefore L1 = L2.

(2) Let the sidesof the angle 1 be respectively parallel to the
sidesofthe angle2,but the respective sides have opposite directions
away from the vertices.

Extending both sides of the angle4, we obtain the angle 2, which
is congruent to the angle 1 (as proved earlier) and to the angle4 (as
verticalto it). Therefore \1774 = \1771.

(3) Finally, let the sides of the angie1be respectively parallel to

the sides of the angles 5 and 6, and one pair of respective sides have
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the same directions, while the other pair, the oppositeones.
Extending one side of the angle 5'or the angle6,we obtain the an-

gle 2, congruent (as proved earlier) to the angle 1. But

Z5(or Z6) + Z2 = 2d (by the property of supplementary angles).
Therefore Z5(or Z6)+ Z1- 2d too.

Thus angles with parallel sides turn out to becongruent when the

directions of respective sides away from the vertices are either both
the same or bothopposite,and when neither condition is satisfied,
the angles add up to 2\177.

Remark. One could say that two angleswith respectivelyparallel
sidesare congruent when both are acute or both are obtuse.In some

cases however it is hard to determine a p\177ori if the angles are acute
or obtuse, so comparingdirections of their sides becomes necessary.

A

\234

D

Figure 85

80. Angles with respectively perpendicular sides.
Theorem.If the sidesof one' angle are respectively per-

pendicular to the sidesofanotherone, then such angles are
either congruent or add up to 2d.

Let the angle ABC labeled by the number i (Figure85)be one

of the given angles, and the other be oneof the four angles 2, 3, 4,
5 formed by two intersecting lines, of which one is perpendicularto
the sideAB and the other to the side BC.

Fromthe vertex of the angle 1, draw two auxiliary lines:BD _k

BC and BE \361 BA. The angle 6 formed by these linesiscongruent to

the angle 1 for the following reason. The anglesDBC and EBA are

congruent since both are right. Subtractingfromeachof them the

same angle EBC we obtain: Z1 =/_6. Now notice that the sides of
the auxiliary angie6 areparallel to the intersecting lines which form

--the angles 2, 3,4, 5 (because two perpendiculars to the same line are
parallel,\36571). Therefore the latter angles are either congruent to the



i1. P\177rallel lines 63

angle 6 or supplement it to 2d. Replacingthe angle6 with the angle

1 congruent to it, we obtain what was required to prove,

EXERCISES

1\1770. Divide the plane by infinite straight lines into five parts, using

as few lines as possible.
1\1771. In the interior of a given angie, constructan angle congruent

to it.

1\177;\177. Using a protractor, straightedge, and drafting triangle, measure
an angle whose vertex does not fit the page of the diagram.

1J$. How many axes of symmetry does a pair of parallel lineshave?

How about three parallel lines?

1\177. Two parallel lines are intersected by a transversal, and one
of the eight angles thus formed is 72 \370. Find the measures of the
remaining sevenangles.
1\1775. One of the interior angles formed by a transversalwith one of

two given parallel lines is 4d/5. What angle does its bisector make
with the other of the two parallel lines?

1\1776. The angle a transversal makes with one of two parallel lines is

by 90 \370greater than with the other. Find the angle.
1J7. Four out of eight angles formed by a transversalintersecting
two given lines contain 60 \370each, and the rems;ining four contain 120\370

each. Does this imply that the given lines are parallel?
1\177,$. At the endpoints of the base of a triangle,perpendicularsto
the lateral sides are erected. Compute the angie at the.vertex of the

triangle if these perpendiculars intersect at the angleof 120\370.

1\177,9. Through a given point, construct a line making a given angle

to a given line.
150. Prove that if the bisectorof oneof the exterior angles of a
triangle is parallel to the oppositeside,then the triangle is isosceles.

151. In a triangle,through the intersection point of the bisectors of
the anglesadjacentto a base,a line parallel to the base is drawn.
Prove that the segmentof this line containedbetween the lateral

sides of the triangle is congruentto the sum of the segments cut out
on these sidesand adjacentto the base.

152.' Bisect an angle whose vertex does not fit the page of the
diagram..
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12 The angle sum of a polygon

81.Theorem. The sum of angles of a triangle is 2d.
Let ABC (Figure 86) be any triangle; we are requiredto prove

that the sum of the angles A, B and C is2d,i.e.180 \370.

Extending the side AC past C and drawing CE]]ABwe find:

/..A = ZECD (as corresponding anglesformed by a transversal inter-

secting parallel lines) and \177B = \177BCE (as alternate angles formed
by a transversal intersecting parallel lines). Therefore

ZA + ZB+ ZC= ZECD+ ZBCE + ZC = 2d = 180\370.

A C D
//\17760 o
D

B

Figure 86 Figure 87

Corollaries. (1) Any exterior angle of a triangle is congruentto
the sum of the interioranglesnot supplementary to it (e.g. ZBCD -
ZA + Z\177).

(2) If two angles of one triangleare congruent respectively to two

angles of another, then the remaining anglesare congruent as well.

(3) The sum of the two acute anglesofa right triangle is congru-

ent to one right angle,i.e. it is90\370.

!d i.e. 45 \370.
(4) Jn an isosceles right triangle, each acute angle is 2 ,

-\177d .(5) In an equilateral triangle, each angleis 3 , i.e. 60 \370

(6) If in a right triangle ABC (Figure 87) oneof the acute angles

(for instance, ZB) is 30\370, then the leg opposite to it is congruentto
a half of the hypotenuse. Indeed, noticing that the other acuteangle

in such a triangle is 60\370,attach to the triangle ABC another triangle
ABD congruent to it. Then we obtain the triangle DBC, whose

angles are 60 \370each. Such a triangle has to be equilateral(\36545), and

hence DC = BC. But AC = \253DC, and therefore AC = \253BC.
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YVe leave it to the .reader to prove the converse proposition: If
a leg is congruentto a half of the hypotenuse, then the acute angle
oppositeto it is30\370.

82. Theorem. The sum of angles of a convexpolygonhav-

ing n sides is congruent to two right anglesrepeatedn- 2

times.

Taking, inside the polygon, an arbitrary pointO (Figure88),con-
nect it with all the vertices. The convexpolygon is thus partitioned

into as many triangles as it has sides,i.e.n. The sum of angles in
each of them is 2d. Thereforethe sum of angles of all the triangles
is 2dn. Obviously, this quantity exceeds the sum of all angles of the
polygon by the sum of all those angleswhich aresituatedaround the

point O. But the latter sum is 4d (\36527). Therefore the sum of angles
of the polygon is

2dn- 4d - 2d(n - 2) -i80 \370x (n- 2).

A

Figure 88 Figure 89

Remarks. (1) The theorem can be alsoproved this way. From

any vertex A (Figure 89) of the convex polygon, draw its diagonals.
The polygon is thus partitioned into triangles, the numberof which

is two less than the number of sides of the polygon. Indeed, if we

exclude from counting those two sides which form the angle A of

the polygon, then the remaining sides correspondto one triangle

each. Therefore the total number of such trianglesis n - 2,where

n denotes the number of sides of the polygon.In each triangle, the

sum of angles is 2d, and hencethe sum of angles of all the triangles is
2d(n- 2).But the latter sum is the sum of all anglesof the polygon.

(2) The same result holds true for any non-convexpolygon.To
prove this, one should first partition it into convexones. Forthis,
it suffices to extend all sides of the polygon in both directions.The
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infinite straight lines thus obtainedwill divide the plane into convex
parts: convexpolygons and someinfinite regions. The original non-
convex polygon will consist of someof theseconvex parts.

83. Theorem. If'at each vertex of a convexpolygon,we

extend one of the sides of this angle, then the sumof the
exteriorangles thus formed is congruent to 4d (regardlessof
the number of sides of the polygon).

Each of such exteriorangles(Figure90)supplements to 2d one

of the interior angles of the polygon. Therefore if to the sum of all
interior angleswe add the sum of these exterior angles, the result
will be 2dn (where n is the number of sides of the polygon). But the
sum of the interiorangles, as we have seen, is 2dn - 4d. Therefore

the sum of the exterior .angles is the difference:

2dn- (2db - 4d) = 2dn - 2dnq- 4d = 4d = 360 \370.

Figure 90

EXERCISES

153. Compute the angle betweentwo medians of an equilateral tri-
angle.
15J. Computethe anglebetween bisectors of acute angles in a right
triangle.
155. Given an angleofan isoscelestriangle, compute the other two.
Consider two cases: the given angle is (a) at the vertex, or (b) at the

base.

156. Compute interior and exterior angles of an equiangularpen-
tagon.
157.*Compute angles of a triangle which is divided by one of its

bisectors into two isoscelestriangles.Findallsolutions.
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158. Provethat if two angles and the side opposite to the first of

them in one triangle axe congruent respectivelyto two angles and

the side opposite to the first of them in another triangle, then such
trianglesare congruent.

Remark: This proposition is ca]led sometimes the AAS-test, or
SAA-\177est.

159. Prove that if a leg and the acuteangle opposite to it in one
right triangle are congruent respectively to a leg and the acute an-
gle oppositeto it in another right triangle, then such triangles are
congruent.
160. Prove that in a convex polygon, one of the anglesbetweenthe

bisectQrs of two consecutive angles is congruent to the semisumof
thesetwo angles.

161. Given two angles of a triangle,constructthe third one.

162. Given an acute angle of a right triangle,construct the other

acute angle.

165. Construct a right triangle,given one of its legs and the acute
angleoppositeto it.
164.Construct a triangle, given tw\177 of its angles and a side opposite
to oneof them.

165. Construct an isosceles triangle, given its baseand the angie at

the vertex.

166. Construct an isoscelestriangle:(a) given the angle at the base,
and the altitudedroppedto oneof the lateral sides; (b) given the
lateral side and the altitudedroppedto it.
167.Construct an equilateral triangle, given its altitude.
168. Trisecta right angle (in other words, construct the angle of

x 90\370= oo).

169. Construct a polygon congruentto a given one.

Hint: Diagonals partition a convex polygon\177into triangles.

170. Construct a quadrilateral, given three of its anglesandthe sides
containing the fourth angle.

Hint: Find the fourth angle.
171.*How many acute angles can a convex polygon have?
17\177. * Find the sum of the \"interior\" angles at the five vertices of a
five-point star (e.g. the one shown in Figure 221), and the sum of
its five exterior angles (formed by extending one of the sidesat each
vertex). Compare the results with those of \36582 and \36583.

175.* Following Remaxk (2) in \36582, extend the results of \3658.2 and

\36583 to non-convex polygons.
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13 Parallelograms and trapezoids
84. The parallelogram. A quadrilateral whose opposite sides

arepairwise parallel is called a parallelogram. Such a quadrilateral
(ABe'D,Figure 91) is obtained, for instance, by intersecting any two

parallel lines KL and MN with two other parallellinesRS and PQ.

85. Properties of sides and angles.
TI\177eorem. In any parallelogram, opposite sides are congru-

ent, oppositeanglesare congruent, and the sum of angles
adjacent to one side is 2d (Figure 92).

Drawing the diagonal BD we obtain two triangles: ABD and

BCD, which are congruent by the ASA-test because BD is their
common side, /1 = /4, and /2 = /3 (as alternate angles formed
by a transversal intersecting parallel lines). It follows from the con-
gruenceof the triangles that AB = CD, AD - BC, and/_A -/C.

The opposite angles B and D arealsocongruent since they are sums
of congruent angles.

Finally, the angles adjac, ent to one side, e.g. the anglesA and

D, add up to 2d since they are same-side interior angles formed by
a transversalintersectingparallel lines.

Corollary. If one of the angles of a parallelogramis righi, then

the other three are also right.
Remark.Thecongruence of the opposite sides of a parallelogram

canbe rephrased this way: parallel segments cut out by parallel lines

are congruent.

R

L /N B C C

P Q 1\177D $

M A D A P

M N D

Q B

Figure 91 Figure 92 Figure 93

Corollary. ff two lines are parallel,then all points Of each of
them are thesamedistance away from the other line; in short parallel
lines (AB and CD, Figure 93) are everywhere the same distance
apart.

--' Indeed, if from any two points M and N of the line CD, the

perpendiculars MP and NQ to AB are dropped,then these perpen-
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dicularsareparallel

a parallelogram. It
N are are the same

(\36571), and therefore the quadrilateral MNQP is
follows that MN = NQ, i.e. the points M and

distance away from the lineAB.
Remark. Given a parallelogram (ABCD, Figure 91), one some-

timesrefers to a pair of its parallel sides (e.g. AD and BC) as a pair
of bases. In this case,a ]inesegment (UV) connecting the parallel
lines PQ and RS and perpendicularto them is called an altitude
of the parallelogram. Thus, the corollarycan be rephrased'this way:

all altitudes between the same basesof a parallelogramare congruent

to each other.

86. Two tests for parallelograms.
Theorem. If in a convex quadrilateral:
(1) opposite sides are congruentto eachother\177 or

(2) two opposite sides are congruent and parallel,
then thisquadrilateralis a parallelogram.

(1) Let ABCD (Figure 92) be a quadrilateralsuch that

AB=CD and BG=AD.

It is requiredto prove that this quadrilateral is a parallelogram, i.e.
that ABIICDand BClIAD.

Drawing the diagonal BD we obtain two triangles, which are

congruent by the SSS-testsinceBDis their common side, and AB =
CD and BC = AD by hypothesis. It follows from the congruence
of the trianglesthat Z1 = Z4 and Z2 = Z3 (in congruent triangles,

congruent sides oppose congruent angles). Thisimpliesthat ABIICD

and BCllAD (if alternate angles are congruent,then the lines are

parallel).

(2) Let ABeD (Figure 92) be a quaArilateral Such that B\275IIAD

and BG = AD. It is required to prove that ABCD is a parallelo-
gram,i.e. that ABllCD.

The triangles ABD and BCD are congruentby the SAS-test

because BD is their common side,BC = AD (by hypothesis), and

Z2 -- Z3 (as alternateanglesformedby intersecting parallel lines by
a transversal).. The congruenceofthe triangles implies that Z1 = Z4,
and therefore ABllCD.

87.The diagonalsandtheirproperty.

Theorem. (1) If a quadrilateral (ABCD, Figure 94) is a par-
allelogram,thenits diagonals bisect each other.

(2) Vice versa, in a quadrilateral, if the diagonalsbisect
each other\177 then this quadrilateral is a parallelogram.
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(1) The triangles BOG and AOD are congruent by the ASA-test,

because BC = AD (as oppositesidesofa parallelogram), Z1 = L2
and L3 = Z4 (as alternateangles).It follows from the congruence

of the triangles that OA = OC and OD = OB.

A

B P

Q D

Figure 94

(2) If AO = OC and BO = OD, then the triangles AOD and
BOO are congruent (by the SAS-test). It follows from the congru-
enceofthe triangles that Z1 = Z2 and Z3 = Z4. Therefore BC[[AD

(alternate angles are congru.ent) and BC = AD. Thus ABCD is a
parallelogram (by the secondtest).

88.Centralsymmetry. Two points A and A' (Figure 95) are
calledsymmetricabout a point O, if O is the midpointof the line
segmentAA'.

Thusl in order to construct the point symmetricto a given point

A about another given point O, one should connect the points A
and O by a line,extend this line past the point O, and markon the
extensionthe segment OA' congruent to OA. Then A' is the required
point.

Two figures (or two parts of the same figure)arecalled symmetric

about a given point O, if for each point of one figure, the point
symmetricto it about the point O belongs to the other figure, and
vice versa. The point O is then calledthe center ofsymmetry.The

symmetry itself is called central (as opposed to the axialsymmetry

we encountered in \36537).If each point of a figureissymmetricto some

point of the same figure (about a certaincenter),then the figure is

said to have a centerof symmetry. An example of such a figure is a
circle;its center of symmetry is the center of the circle.

Everyfigurecan be superimposed on the iflgure symmet-
ric to it by rotating the figure through the angle 180\370 about

the center of symmetry. Indeed, any two symmetric points (say,

A and A', Figure 95) exchange their positionsunder this rotation.

Remarks. (1) Two figures symmetricabout a pointcan be super-
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imposedthereforeby a motion within the plane, i.e. without lifting
them off the plane. In this regard central symmetry differs from axial

symmetry (\36537),where for superimposingthe figures it was necessary

to flip one of them over.
(2) Just like axial symmetry, central symmetry is frequently found

around us (see Figure 96, which indicatesthat eachofthe lettersN

and S has a center of symmetry while E and W do not).

NS

W E

SN

Figure 95 Figure 96

89. In a parallelogram, the intersection point of the di-
agonalsis the center of symmetry (Figure 94).

Indeed, the verticesA and C are symmetric about the intersection
point O of the diagonals(sinceAO = OD), and so are B and C:
Furthermore, for a point P on the boundary of the parallelogram,
draw the line PO, and let Q be the_pointwhere the extension of

line past O meets the boundary. The triangles AQO and CPO are
congruent by the ASA-test for z\1774 = Z3 (as alternate), ZQOA --
ZPOC (as vertical),and AO = OC. Therefore QO = OP, i.e. the
pointsP and Q are symmetric about the center O.

Remark. If a parallelogram is turned around 180 \370 about the

intersection point of the diagonals, then eachvertex exchanges its

position with the opposite one (A with C, and B with D in Figure
94), and the new position of the parallelogramwill coincidewith the

old one.

Most parallelograms do not possessaxialsymmetry. In the next
section we will find out which of them do..

90.The rectangleandits properties. If one of the angles of
a parallelogramis right then the other three are also right (\36585). A

. parallelogram all' of whose angles are right is calleda rectangle.
Since rectangles are parallelograms, they possess all properties of.
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parallelograms (for instance, their diagonals bisecteachother, and

the intersection point of the diagonals is the center of symmetry).

However rectangles have their own special properties.

A D

Figure 97 Figure 98

(1) In a rectangle (ABCD, Figure97), the diagonalsare
congruent.

The right triangles ACD and ABD are congruent becausethey

have respectively congruent legs (AD is a commonleg,and AB --

CD as opposite sides of a parallelogram).The congruence of the

triangles implies: AC = BD.
(2) A rectangle has two axes of symmetry. Namely, each

linepassingthrough the center of symmetry and parallel to two op-

posite sides of the rectangle is its axis of symmetry. The axes of

symmetry of a rectangleareperpendicular to each other (Figure 98).
91. The rhombus and its properties.A parallelogram all

of whose sides are congruent is calleda rhornbus.Besideall the

properties that parallelograms have, rhombi also have the following

special ones.

c

Figure 99 Figure-100

(1) Diagonals of a thombus(ABCD, Figure 99) are perpen-
dicular and bisect the angles of thethombus.

The triangles AOB and COB are congruent by the SSS-testbe-
-cause BO is their common side, AB = BC (since all sides of a
thombus are congruent), and AO - OC (since the diagonals of any
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parallelogram bisect each other). The congruence of the triangles

implies that

Zi=Z2, i.e. BD_I_AC, and Z3=Z4,

i.e.the angle B is bisected by the diagonalED. Fromthe congruence

of the triangles BOC and DOC, we concludethat the angle C is
bisectedby the diagonal CA, etc.

(2) Each diagonal of a thombusis its axis of symmetry.

The diagonal BD (Figure 99) isan axisofsymmetry of the thom-

bus ABCD because by rotating ABAD about BD we can superim-
pose it onto ABCD. Indeed,the diagonal BD bisects the angles B
and D, and besidethisAB = BC and AD = DC.

The samereasoning applies to the diagonal AC.

92. The square and its properties.A square can be defined
as a parallelogramallofwhose sides are congruent and all of whose
anglesare right. One can also say that a square is a rectangleall
of whose sides are congruent, or a rhombus all of whose anglesare
right. Therefore a square possesses all the properties of parallelo-
grams,rectanglesand ?hombi. For instance, a square has four axes
of symmetry (Figure 100): two passing through the midpoints of op-
positesides(as in a rectangle), and two passing through the vertices
oftheoppositeangles (as in a rhombus).

N p A

B D E F C

Figure 101

93. A theorem based on propertiesof parallelograms.

Theoram. If on one side of an angle (e.g.onthesideBC
of the angle ABC, Figure 101), we mark segments congruent to
eachother(DE = EF =...), and through their endpoints,
we draw parallel lines (DM, EN, FP, ... ) until their in-
tersections with the other side of the angle, then the seg-
mentscut out on this side will be congruent to each other
(M\177V =.\177WP = ...).
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Draw the auxiliary lines D/f and DL parallelto AB. Thetrian-

gles DKE and ELF are congruent by the ASA-test since DE = EF

(by hypothesis), and \177KDE - z\177LEF and z\177/f/\177D - \177LF/\177 (as cor-

responding angles formed by a transversalintersectingparallel lines).

From the congruence of the triangles, it follows that DK = EL. But
DK = MN and EL = NP (as opposite sides of parallelograms),
and therefore MN = NP.

Remark. The congruent segments can be also marked starting
fromthe vertex of the angle B, i.e. like this: BD = DE= EF = ....

Then the congruent segments on the other sideofthe angle are also

formed starting from the vertex, i.e. BM = MN = NP = ....
94. Corollary. The line (DE, Figure 102) passing through the

midpoint of one side(AB) of a triangle and parallel to another side
bisectsthe third side (BC).

Indeed, on \177the side of the angle B, two congruentsegmentsBD =
DA are marked and through the division points D andA, two parallel

lines DE and AC are drawn until their intersections with the side
BC. Therefore,by the theorem, the segments cut out on this side
are also congruent, i.e. BE \177- EC, and thus the point E bisectsBC.

Remark. The segment connecting the midpoints of two sides of

a triangle is called a midline of this triangle.

Figure lb2

95. The midline theorem.
Theoram.Thelinesegment(DE, Figure 102) connecting the

midpoints of two sides of a triangleis parallelto the third

side, and is congruent to a halfof it.
To prove this, imagine that through the midpoint D of the side

\177tB, we draw a line parallel to the sideAC. Then by the result of

\36594, this line bisects the side BC and thus coincideswith the line

DE connecting the midpoints of the sidesAB and BC.

FurthermOre, drawing the line E\234]t\177tD , we find that the side



13. ParalleJogramsemd trapezoids 75

AC is bisected at the point F. Therefore AF = FC and beside this
AF = DE (as opposite sides of the parallelogram ADEF). This
implies:DE =

96.The trapezoid.A quadrilateral which has two opposite
sides parallel and the othertwo opposite sides non-parallel is called
a trapezoid. Theparallelsides(AD and BC, Figure 103) of a trape-
zoid are calleditsbases,and the non-parallel sides (AB and CD)
its lateral sides. If the lateral sides are congruent, the trapezoid is
calledisosceles.

A

Figure 103 Figure 104

97. The midline of a trapezoid.The line segment connecting

the midpoints of the lateralsidesofa trapezoid is called its midline.

Theorem. The midline (EF, Figure104)of a trapezoidis
parallel to the bases and is congruent to their semisum.

Through the points B and F, draw a line until its intersection

with the extension of the side AD at some point G. We obtain
two triangles: BCF and GDF, which-' are congruent by the ASA-
test since CF = FD (by hypothesis), ZBFC = ZGFD (as vertical
angles),andZBCF= ZGDF(asalternate interior angles formed by
a transversal intersecting parallellines).From the congruence of the
triangles, it follows that BF = FG and BC = DG. We see now that
in the triangle ABG, the line segment EF connectsthe midpointsof
two sides. Therefore (\36595) we have: E\234 AG and EF = \253(AD+DG),

or in other words,EF AD and EF = \253(AD + BC).

EXERCISES

174. Is a parallelogram considered a trapezoid?

175. How many centers of symmetry can a polygon have?

176. Can a polygon have two parallel axes of symmetry?

177. How many axes of symmetry can a quadrilateral have?
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Prove theorems:

178. Midpoints of the sides of a quadrilateralare the vertices of a

parallelogram. Determine under what conditions this parallelogram
will be (a) a rectangle, (b) a rhombus, (c) a square.

179. In a right triangle, the medianto the hypotenuse is congruent
to a half of it.
Hint: Doublethe median by extending it past the hypotenuse.
180. Conversely, if a median is congruent to a half of the sideit
bisects,then the triangle is right.

181. In a right triangle,the median and the altitude drawn-to the
hypotenuse make an anglecongruent to the difference of the acute
angles of the triangle.
182.In /kABC, the bisector of the angle A meets the side BC at
the point D; the linedrawn from/) and parallel to CA meets AB
at the pointE; the line drawn from Z; and parallel to BC meets
at F. Prove that ZL4 =

18o\370. Inside a given angle, another angle is constructedsuch that

its sides are parallel to the,sides of the given one and are the same
distance away from them. Prove that the bisector of the constructed
anglelieson the bisector of the given angle.
18.4.The linesegmentconnecting any point on one base .ofa trape-
zoidwith any point on the other base is bisectedby the midline of

the trapezoid.

185. The segmentbetweenmidpointsofthe diagonalsofa trapezoid

is congruent to the semidifference of the bases.
186. Through the vertices of a triangle, the lines parallel to the

opposite sides are drawn. Prove that the triangleformedby these

lines consists of four triangles congruent to the given one, and that

each of its sides is twicethe corresponding side of the given .triangle.
! 87.Inan isosceles triangle, the sum of the distances from each point

of the base to the lateralsidesis constant, namely it is congruent to
the altitude droppedto a lateral side.

188. How does this theorem change if points on the extension of the
base are taken instead?
189.In an equilateral triangle, the sum of the distances from an

interior point to the sides of this triangledoesnot dependon the

point, and is congruent to the altitude of the triangle.
190.A parallelogram whose diagonals are congruent is a rectangle.

---191.A parallelogram whose diagonals are perpendicular to each
other is a rhombus.
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19\234. Any parallelogram whose angle is bisected by the diagonalisa
rhombus.

195. From the intersection point of the diagonalsof a rhombus,

perpendiculars are dropped to the sides of the rhombus.Provethat

the feet of these perpendiculars are vertices of a rectangle.
194.Bisectorsofthe angles of a rectangle cut out a square.
195. Let A', B', C t, and D' be the midpoints of the sides.CD,DA,

AB, and BC of a square. Prove that the segmentsAA', CC', DD',

and BB' cut out a square,whose sides are congruent to 2/5th of any
of the segments.

196. Given a square ABCD. On its sides,congruent segments AA',

BB', CC', and DD' are marked. ThepointsA', B', C', and D' are
connected consecutivelyby lines. Prove that A'B'C'D' is a square.

Find the geometriclocusof:
197.The midpoints of all segments drawn from a givenpoint to
various points of a given line.

198. The pointsequidistantfrom two given parallel lines.

199. The vertices of triangleshaving a common base and congruent
altitudes.

Construction problems
200.'Draw a line parallel to a given one and situated at a given

distance from it.

201. Through a given point, draw a line such that its line segment,
contained between two given lines, is bisectedby the given point.

202. Through a given point, draw a line such that its line segment,
containedbetweentwo given parallel lines, is congruent to a given
segment.
205. Between the sides of a given angle, place a segmentcongruent

to a given segment and perpendicular to oneofthe sidesofthe angle.

20J. Between the sides of a givenangle,placea segment congruent

to' a given segment and parallel to a given line intersecting the sides
of the angle.
205. Betweenthe sidesofa given angle, place a segment congruent
to a given segmentand such that it cuts congruent segments on the
sidesof the angle.
206.Ina triangle, draw a line parallel to its base and such that the

line segment contained between the lateralsidesis congruent to the

sum of the segments cut out on the lateralsidesand adjacent to the
base.



78 Chapter 1. THESTRAIGHTLINE

14 Methods of construction and symmetries

98.Problem.To divide a given line segment (AB, Figure 105)
into a given number of congruent parts (e.g. into 3).

Fromthe endpointA, draw a line AC that forms with AB some
angle. Mark on AC, starting from the point .A, three congruent
segmentsof arbitrary length: AD = DE = EF. Connect the point
F with B, and draw through E and D linesEN and DM parallel

to FB. Then, by the resultsof \36593, the segment AB is divided by
the points M and N into three congruent parts.

c
F'

A M N B

Figure 105

c I -,,

E F

Figure 106

99. The method of parallel translation. A special method

of solving construction problems, known as the method of parallel

translation, is based on properties of parallelograms.It can be best

explained with an example.

Problem. Two towns A and B (Figure 106) are situatedon op-
positesidesofa canal whose banks CD and E\234 are parallel straight

lines. At which point shouldonebuild a bridge MM' across the canal
in order to make the path AM + MM \177+ M'B between the towns the
shortest possible?

To facilitate the solution, imagine that all points of the side of
the canal where the town A is situated are moved downward (\"trans-

lated\") the same distance along the linesperpendiculartothebanks

of the canal as far as to makethe bank CD merge with the bank

EF. In particular, the point A is translated to the new position
A ' on the perpendicular AA \177to the banks, and the segment AA t is

congruent to the bridge MM \177. Therefore AA\177MtM is a parallelo-
gram (\36586 (2)), and hence AM = A\177M( We conclude that the sum
--AM+ MM\177+ M\177B is congruent to AA \177+ A\177M \177+ M\177B. The Iatter

sum will be the shortest when the brokenline A\177MtB is straight.
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Thus the bridge should be-built at that point X on bank EF where

the bank intersects with the straight line A'B.
100.Themethodof reflection. Properties of axial symmetry

can also be usedin solving construction problems. Sometimes the
required construction procedureiseasilydiscoveredwhen one folds a

part of the diagram alonga certain line (or, equivalently, reflects it
in this line as in a mirror) so that this part occupies the symmetric
positionon the other side of the line. Let us give an example.

Problem. Two towns A and B (Figure. 107) are situated on the

same side of a railroad CD which has the shape of a straight line.
At which point on the railroad should one build a station M in order
to make the sum AM + MB of the distances from the towns to the
station the smallest possible?

Reflect the point A to the new position A' symmetric about the
lineCD. Thesegment WM is symmetric to AM about the lineCD,
and therefore A\177M = AM. We conclude that the sum AM + MB is

congruent to A\177M + MB. The latter sum will be the smallestwhen

the broken line WMB is straight. Thus the stationshould be built

at the point X where the railroadline CD intersects the straight line

The same constructionsolvesyet another problem: given the line
CD, and the points A and B, find a point M such that ZAMC -
ZBMD.

A

A

Figure 107 Figure 108

101. Translation. Supposethat a figure (say, a triangle ABC,

Figure 108) is moved to a new position (A'B\177C \177)in a way such that
all segmentsbetweenthepointsofthe figure remain parallel to them-

selves (i.e. A'B'IIAB, B'C'IIBC,e\177o.). Then the new figure is called
a translation of the originalone, and the whole motion, too, is
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called translation. Thus the sliding motion of a drafting triangle

(Figure 76) along a straightedge (in the constructionofparallel lines

described in \36574) is an example of translation.

Note that by the results of \36586, if ABIIA'B \177and AB - A\177B ' (Fig-

ure 108), then ABB\177A \177is a parallelogram, and therefore AA\177HBB \177

and AA \177= BB( Thus, if under translation of a figure, the new posi-

tion A \177of one point A is known, then in orderto translate all other

points B, C, etc., it suf\177ces to construct the parallelograms AA\177B\177B,

AA\177C\177C, etc. In other words, it suffices to constructline segments
BB\177 CC\177 etc. parallel to the line segment AA \177,directed the same

way as AA \177,and congruent to it.

Vice versa, if we move a figure (e.g. /kABC) to a new position
(/kA\177B\177C\177) by constructing the line segments AA \177,BB \177,CC \177,etc.

which are congruent and parallel to eachother,and are also directed

the same way, then the new figure is a translation of the old one.

Indeed, the quadrilaterals AA\177B\177B, AA\177C\177C, etc. are parallelograms,
and therefore all the segmentsAB, BC, etc. are moved to their new
positions/i\177B \177,B'C \177,etc. remaining par.alIel to themselves.

Let us give onemoreexample of a construction problem solved
by the method of translation.

102.Problem. To construct a quadrilateral ABCD (Figure
109), given segments congruentto its sidesand to the line EF con-
necting the midpoints of two opposite sides. '

A

D

B

E

C

C'

Figure 109

To bring the given lines close to each other, translate the sides
AD and BC, i.e. move them in a way such that they remain parallel

to themselves, to the newpositionsED\177and EC \177.Then DAED \177and

C\177l\177BCare parallelograms, and hence the segmentDD\177is congruent
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and parallel to AE, and the segmentCC\177congruent and parallel to
BE. But AE = EB, and therefore DD \177= CC \177and DD\177I]CC \177.As

a consequence, the triangles DD'\234and CC\177F are congruent by the

SAS-test (since DD' = CC\177,DF = FC, and /_D\177DF = ZC\177CF.).

The congruence of the triangles impliesthat ZD\177FD = ZC\177FC,

hence the broken line D\177FC \177turns out to be straight, and therefore
the figure ED\177FC \177is a triangle. In this triangle, two sides are known

(ED \177= AD and EC \177= BC), and the median EF to the third side

is known too. The triangle EC\177D \177is easily recovered from these
data. (Name]y,doubleEF by extending it past F and connect the
obtainedendpointwith D \177and C( In the resulting parallelogram,
all sides and oneofthe diagonals are known.)

Having recovered AED\177C\177,construct the triangles D\177DF and

C\177CF, and \177hen the entire quadrilateral ABCD.

EXERCISES

207. Construct a triangle,given:

(a) its base, the altitude, and a lateralside;
(b) its base, the altitude, and an angle at the base;
(c) an angle, and two altitudes dropped to the sidesofthis angle;

(d) a side, the sum of the other two sides, and the altitude dropped
to one of thesesides;
(e) an angle at the base, the altitude, and the perimeter.

208. Construct a quadrilateral, given three of its sidesand both

diagonals.

209. Construct a parallelogram, given:
(a) two non-congruent sides and a diagonal;
(b) one sideand both diagonals;
(c) the diagonals and the angle between them;
(d) a side,the altitude, and a diagonal. (Is this alwayspossible?)
210. Construct a rectangle, given a diagonal and the anglebetween
the diagonals.
211.Construct a rhombus, given:

(a) its side and a diagonal;
(b) both diagonals;

(c) the distance between two parallel sides,and a diagonal;

(d) an angle, and the diagonalpassingthrough its vertex;

(e) a diagonal, and an angle oppositeto it;
(f) a diagonal, and the angle it forms with one of the sides.
212.Construct a square, given its diagonal.
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213. Construct a trapezoid, given:
(a) its base,an angle adjacent to it, and both lateral sides(therecan

be two solutions, one, or none);
(b) th\177 difference between the bases, a diagonal, and lateralsides;
(c) the four sides (is this always possible?);
(d)abase,itsdistance from the other base, and both diagonals (when
is this possible?);
(e) both bases and both diagonals (when is this possible?).
21\177.' Construct a square, given:

(a) the sum of a diagonaland a side;
(b).the difference of a diagonal and an altitude.
215.' Constructa parallelogram, given its diagonals and an altitude.
216.' Constructa parallelogram, given its side, the sum of the di-
agonals,and the angle between them.

217.' Construct a triangle,given:

(a) two of its sides and the medianbisectingthe third one;

(b) its base, the altitude, and the medianbisecting a lateral side.

215.' Construct a right triangle,given:

(a) its hypotenuse and the s\177m of the legs;

(b) the hypotenuse and the difference of the legs. Perform the re-
search stageof thesolutions.
219.Given an angle and a point inside it, constructa triangle with

the shortest perimeter such that one of its verticesis the given point

and the other two vertices lie on the sides of the angle.
Hint: use the methodof reflection.

220.' Construct a quadrilateral ABeD whose sides.are given as-

suming that the diagonal AC bisects the angleA.

221.' Given positions A and 'B of two billiard balls in a rectangular

billiard table, in what direction should oneshootthe ball A so that
it reflects consecutively in the four sides of the billiard and then hits
the ballB?
222.Construct a trapezoid, given all of its sides.
Hint: use the methodof translation.

225.' Construct a trapezoid, given one of its angles,bothdiagonals,

and the midline.

224[.' Construct a quadrilateral, given three of its sidesand both

angles adjacent to the unknown side.
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THE CIRCLE

i Circlesand chords

103. Preliminary remarks. Obviously, through a point (A,

Figure 110), it is possible to draw as many circles as one wishes:
their centers can be chosenarbitrarily. Through two points (A and

B, Figure 111),it is alsopossibletodraw unlimited number of circles,
but their centers cannot be arbitrary since the points equidistant

from two points A and B must lie on the perpendicular bisector
of the segment AB (i.e. on the perpendicular to the segmentAB

passing through its midpoint, \36556).

Let us find out if it is possible to draw a circlethrough three

points.

Figure 110 Fiqure 111

104. Theorem. Through any three points, not lying on the
same line, it.is possibleto draw a circle, and such a circle
is unique.

83
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Through three points A, B, C (Figure112),not lying on the

same line, (in other words, throughthe verticesofa triangle ABC),

it is possible to draw a circleonly if there exists a fourth point O,
which is equidistantfrom the points A, B, and C. Let us prove that
such a point exists and is unique. For this, we take into account

that any point equidistant from the points A and B must lie on the
perpendicularbisectorMNof the side AB (\36556).Similarly, any point
equidistantfromthe pointsB and C must lie on the perpendicular
bisector PQ of the sideBC. Therefore, if a point equidistant from
the three pointsA, B, and C exists, it must lieonboth MN and PQ,

which is possible only when it coincideswith the intersectionpoint
ofthesetwo lines. The lines MN and PQ do intersect(sincethey

are perpendicular to the intersecting lines AB and BC, \36578). The

intersection point O will be equidistant from A, B, and C. Thus, if

we take this point for the center, and take the segment OA (or OB,

or OC) for the radius, then the circlewill pass through the points

A, B, and C. Sincethe lines MN and PQ can intersect only at one
point,the center of such a circle is unique. The lengthof the radius
is alsounambiguous, and th, erefore the circle in question is unique.

A

' Q 0 N

P

c

Fiqure 112

Remarks. (1) If the points A, B, and C (Figure 112) lay on
the sameline, then the perpendiculars MN and PQ would have
been parallel,and thereforecould not intersect. Thus, through three
points lying on the sameline,it isnotpossibleto draw a circle.

-- (2) Three or more points lying on the samelineare often called

collinear.
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Corollary. ThepointO,being the same distance away from A

and W, has to also lie on the perpendicularbisector\177/$ of the side

AC. Thus: three perpendicular bisectorsof the sides of a triangle
intersect at one point.

105.Theorem. The diameter (AB, Figure 113), perpendic-
ular to a chord,bisectsthe chordandeachof the two arcs

subtended by it.
Fold the diagramalong the diameter AB so that the left part of

the diagramfalls onto the right one. Then the left semicircle will be

identified with the right semicircle,and the perpendicularKC will

merge with KD. It follows that the pointC, which is the intersection

of the semicircle and KC, will merge with D. Therefore KC -

BC=BD, AC-AD.

Figure 113 Figure 114

106. Converse theorems. (1) The-diameter (AB),bisecting
a chord(CD), is perpendicular to this chord and bisects the
arc subtendedby it (Figure 113).

(2) The diameter (AB), bisectingan are(CBD), is perpen-

dicular to the chord 'subtending the arc, and bisectsit.
Both propositions are easily proved by reductio ad absurdurn.

107. Theorem. The arcs (AC and BD, Figure114)contained
between parallel chords (AB and CD) are congruent.

Fold the diagram along the diameter EF J_ AB. Then we can
concludeonthe basis of the previous theorem that the pointA merges

with B, and the point C with D. Thereforethe arc AC is identified
with the arc BD, i.e. thesearcs are congruent.

108. Problems. (1) To bisect a given arc (AB, Figure 115).

Connecting the ends of the arc by the chord AB,. drop the per-
pendicular to this chordfrom the center and extend it up to the
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intersection point with the arc. By the resultof \365106, the arc AB is
bisected by this perpendicular.

However, if the center is unknown, then one should erect the

perpendicular to the chord at its midpoint.
c

Figure 115 Figure 116

(2) To find the center of a given circle(Figure116).
Pick on the circle any three points A, B, and C, and draw two

chords through them, for instance, AB and BC. Erect perpendicu-

lars MN and PQ to these chordsat their midpoints. The required

center, being equidistant from A, B, and C, has to lie on MN and

PQ. Therefore it is located at the intersectionpoint O of these
perpendiculars.

109. Relationships between arcs and chords.
Theorems. In a disk,or in congruent disks:

(1) if two arcs are congruent, then the chordssubtending
themare congruent and equidistant from the center;

(2) if two arcs, which are smaller than the semicircle, are
not congruent, then the greaterof themis subtended by the

greater chord, and the greater of the two chords is closer to
the center.

(1) Let an arc AB (Figure 117) be congruent to the arcCD;it
is required to prove that the chords AB and CD are congruent, and

that the perpendiculars OE and OF to the chords dropped from the

center are congruent too.
Rotatethe sectorAOB about the center O so that the radiusOA

coincides with the radius OC. Then the arc AB will go along the arc
CD, and sincethe arcsare congruent they will coincide. Therefore
the chord AB will coincide with the chord CD, and the perpendicular

--OEwill merge with OF (since the perpendicular from a given point

to a given line is unique),i.e. AB = CD and OE = OF.
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(2) Let the arc AB (Figure 118)be smaller than the arc CD,
and let both arcs be smaller than the semicirclel it is required to
prove that the chordAB is smaller than the chord CD, and that the
perpendicularOEisgreater than the perpendicular OF.

C K

Figure 117 Figure 118

Mark on the arc CD the arc C/f congruent to the arc AB and
draw the auxiliary chord C/f, which by the resultofpart (1)iscon-
gruent to and is the same distance away from the center as the chord
AB. The trianglesCOD and CO/f have two pairs of respectively
congruent sides(sincethey are radii), and the angles contained be-
tween these sidesare not congruent. In this case (\36550), the greater

angle (i.e. \177C(PD).isopposed by the greaterside.Thus CD > C/f,
and therefore C/;) > AB.

In orderto prove that (PE > OF, draw eL .1_ C/f and take into
account that OE = (PL by the result of part (1), and thereforeit
suiTices to compare OF with O\234. In the right triangle OF/VI (shaded
in Figure 118),the hypotenuse (PAir is greater than the leg (PF. But
OL> OM,and hence 0\234 > OF, i.e. OE > OF.

The theorem just proved for one disk remains true for congru-
ent disksbecause such disks differ from one another only by their

position.

110. Converse theorems. Since the previoustheoremsaddress

all possible mutually exclusive cases of comparative sizeof two arcs

of the same radius (assuming that the arcs are smaller than the

semicircle), and the obtained conclusionsabout comparativesize of

subtending chords or their distances from the center are mutually
exclusive too, the conversepropositionshave to hold true as well.
Namely:

In a disk, or in congruen\177 disks:

(t) congruent chords are equidistant from the center and
subtendcongruentarcs;
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(2) chords equidistant from the centerarecongruentand

subtend congruent arcs;

(3) the greater one of tw}) non-congruent chords is closer
to the center and subtendsthegreaterarc;

(4) among two chords non-equidistant tO the center\177 the

one which is closer to the center subtends the greaterarc.
These propositions are easy to prove by reductio ad absurdurn.

For instance, to prove the first of them we may argue this way. If

the given chords subtendednon-congruent arcs, then due to the first
direct theorem the chords would have been non-congruent, which
contradicts the hypothesis. Therefore'congruent chords must sub-

tend congruent arcs. But when the arcsare congruent, then by the
direct theorem, the subtendingchordsare equidistant from the cen-
ter.

111. Theorem. A diameter is the greatest of all chords.
Connectingthe centerO with the ends of any chord AB not

passing throughthe center (Figure 119), we obtain a triangle AOB
suchthat the chord AB is ,one of its sides, and the othertwo sides

are radii. By the triangle inequality (\36548) we conclude that the chord
AB is smallerthan the sum of two radii, while a diameteris the sum

of two radii. Thus a diameter is greaterthan any chord not passing

through the center. But sincea diameter is also a chord, one can say
that diametersare the greatest of all chords.

A B

Figure 119 Figure 120

EXERCISES

225. A given segmentis moving, remaining parallel to itself, in such
a way that one of its endpoints lies on a given circle. Find the
geometriclocusdescribedby the other endpoint.

226. A given segment is movingin such a way that its endpoints slide
along the sidesofa right angle. Find the geometric locus described
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by the midpoint of this_segment.
227. On a chord AB, two points are taken the samedistanceaway

from the midpoint C of this chord,and through these points, two

perpendiculars to/IB are drawn up to their intersections with the

circle. Prove that these perpendiculars are congruent.
Hint: Foldthe diagram along the diameter passing through C.
228. Two intersecting congruent chords of the same circleare divided

by their intersection point into respectively congruent segments.
229.Ina disk,two chords CC \177and DD \177perpendicular to a diameter

AB are drawn. Provethat the segment MM \177joining the midpoints

of the chords CD and C\177D \177is perpendicular to AB.

230. Prove that the shortestofall chords, passing through a point A

taken in the interior of a given circle,isthe onewhich is perpendicular

to the diameter drawn through A.

231.* Prove that the closest and the farthest points of a given circle
from a given point lieon the secant passing through this point and
the center.
Hint: Apply the triangle inequality.

232. Divide a given arc into 4,8,16,... congruent parts.

233. Construct two arcs of the same radius,given their sum and
difference.

23J. Bisect a givencircleby another circle centered at a given point.
235. Through a point inside a disk, draw a chordwhich is bisected

by this point.

236. Given a chordin a disk, draw another chord which is bisected
by the first one and makes a given angle with it. (Findout for which

angles this is possible.)

237. Construct a circle,centered at a given point, which cuts off a

chord of a given length from a given line.

238. Construct a circle of a given radius, with the center lying on
one sideofa given angle, and such that on the other sideofthe angle
it cutsout a chord of a given length.

2 Relative positions of a line and a circle

112. A line and a circle can obviouslybe found only in one of
the following mutual positions:

(1) The distance from the center to the line is greaterthan the

radius of the circle (Figure 120), i.e. the perpendicular OC dropped
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to the line from the center 0 is greater than the radius. Then the

point C of the line is farther away from the center than the points of
the circleand liestherefore outside the disk. Since all other points
of the line are even farther away from O than the point C (slants
aregrater than the perpendicular), then they all lie outsidethe disk,
and hence the line has no common points with the circle.

(2) The distance from the center to the line is smallerthan the

radius (Figure 121). In this case the pointC liesinside the disk: and
therefore the line and the circleintersect.

(3) The distance from the center to the line equals the radius
(Figure122),i.e.thepoint C is on the circle. Then any other point

D of the line, being farther away from O than C, lies outside the disk.
In thiscasethe line and the circle have therefore only one common
point, namely the one which is the foot of the perpendiculardropped
from the center to the line.

Such a line,which has only one common point with the circle,is
called a tangent to the circle, and the commonpoint is called the

tangency point.

A
A

Figure 121 Figure 122

113. We see therefore that out of three possiblecasesofdispo-
sitionofa line and a circle, tangency takes place only in the third
case,i.e.when the perpendicular to the line dropped from the center

is a radius, and in this casethe tangency point is the endpoint of the
radius lying on the circle. This can be also expressedin the following

way:

(1) if a line (AB) is perTendicularto the radius(OC) at

its endpoint (C) lying on the circle, then the lineis tangent

to the circle, and vice versa:
(2) if a line is tangentto a circle, then the radius drawn

to the tangency point is perpendicularto the line.

114. Problem. To construct a tangent to a given circle such that

it is parallel to a given line AB (Figure 123).
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Drop to AB theperpendicular OC from the center, and through
the point D, where the perpendicularintersects the circle, draw

t\177FIIAB. The required tangent is EF. Indeed,sinceOC _LAB

and EF[lAB , we have t\177F _l OD, and a line perpendicular to a
radiusat its endpoint lying on the circle, is a tangent.

A E

B
A M B

Figure 123 Figure 124

115. Theorem. If a tangent is parallel to a chord, then
the tangency point bisects the arc subtended by the chord.

Leta line AB be tangent to a circle at a point M (Figure 124)

and be parallel to a chord CD; it is required to prove that CM=MD.

The diameter ME passingthrough the tangency point M is per-
pendicular to AB and therefore perpendicular to CD. Thus the

diameterbisectsthe arc CMD (\365105), i.e. CM=MD.

EXERCISES

239. Find the geometriclocusof pointsfrom which the tangents

drawn to a given circle are congruent to a given segment.

2JO. Find the geometriclocusof centers of circles described by a
given radius and tangent to a given line.

\234J1. Two lines passing through a point M are tangent to a circle

at the points A and B. The radius OB is extended past B by the
segmentBC = OB.Prove that ZAMC = 3ZBMC.

2J2. Two lines passingthrough a point M are tangent to a circle
at the points A and B. Through a point C taken on the smallerof
the arcs AB, a third tangent is drawn up to its intersection points D

and E with MA and MB respectively.Prove that (1) the perimeter
of ADME, and (2) the angleDOE (where O is the center of the
circle) do not depend on the position of the point C.
Hint: Theperimeter is congruent to MA+MB;/DOE = \253ZAOB.
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2\177$. On a given line, find a point closest to a given circle.

2JJ. Construct a circle which has a given radius and is tangent to a
given line at a given point.

2J5. Through a given point, draw a circletangent to a given line at
another given point.
2J6. Through a given point, draw a circle that has a given radius

and is tangent to a given line.
2J 7. Construct a circle tangent to the sides of a given angle,and to
oneof them at a given point.

2J 8. Construct a circletangent to two given parallel lines and passing
througha given point lying between the lines.

2J 9. On a given line, find a point such that the tangentsdrawn from

this point to a given circle are congruent to a given segment.

3 Relative positions of two circles

116.Definitions.Two circles are called tangent to each other
if they have only one common point. Two circleswhich have two

common points are said to intersect eachother..,
Two circles cannot have three common point\177 since if they did,

there would exist two circles passing through the same three points,
which is impossible(\365104).

We will call the line of centers the infinite line passing through
the centers of two circles.

117. Theorem.If two circles (Figure 125) have a common
point (A) situated outside the line of centers, then they have
one morecommonpoint(A') symmetric to the first one with
respect to the lineofcenters,(and hence such circles intersect).

A

Figure 125

--' Indeed, the line of centers contains diameters ofeachofthe circles

and is therefore an axis of symmetry ofeachofthem.Thus the point
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A' symmetric to the ..common point A with respect to this axis of
symmetry (and situatedonthe other side of it) must lie on each of
these two circles.

The axis of symmetry is the perpendicularbisectorofthesegment

AA' connecting two symmetric points A and A'. Thus we obtain:

Corollary. The commonchord(AA', Figure 125) of two inter-
secting circles is perpendicularto the line of centers and is bisected
by it.

118. Theorem. If two circles have a commonpoint
Figures 126, 127) situated on the line of centers, then they

are tangent to each other.
The circlescannothave another common point outside the line of

centers, becausethen they would also have a third common point on
the othersideof the line of centers, in which case they would have
to coincide.The circles cannot have another common point on the
line.of centers.Indeed,then they would have two common points
on the lineof centers.The common chord connecting these points
would have been a commondiameter of the circles, and two circles
with a commondiameter coincide.

_A M '

Figure 126 Figure 127

Remark. The tangencyof'two circlesis called ,external if the

circles are ,situated outside one another (Figure126),and internal

if one of them is situated insidethe other (Figure 127).

119. Converse theorem. If two circles are tangent(at a

point. A, Figures 126, 127), then the tangencypoint lieson the

line of centers.

The point A cannot lie outside the line of centers, becauseother-
wise the circles would have one more common point, which contra-

dicts the hypothesis of the theorem.
Corollary. Two tangent circles have the same tangent line at
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their tan#ency point, because the line MN (Figures126,127) passing

through the tangency point A and perpendicular to the radius OA

is also perp6ndicular to the radius O'A.
120. Various casesof relativepositions of two circles.

Denote radii of the two circles by the letters R and R' (assuming
that R _> R'), and the distance between the centers by the letter d.

Examine relationships between these quantities in various cases of

mutual position of the circles.Thereare five such cases, namely:

Figure 128 Figure 129 Figure 130

R

dl R'

\337 R

Figure 131 Figure 132

(1) The circleslie outside each other without tan#ency (Figure
128); in this case obviously d > R + R \177.

(2) The circles have an external tangency (Figure129);then d =

R + R \177since the tangency point lies on the lineofcenters.
(3) The circles intersect (Figure 130); then d < R + R \177,and at

the same time d > R- R\177,since in the triangle OAO \177,the side

OO \177Congruent to d is smaller than the sum, but greaterthan the

difference of the other two sides, congruentto the radii R and R(

(4) The circles have an internal tangency (Figure 131); in this
case d = R- R', because the tangency point lies on the line of
centers.

-- (5) One circle lies inside the other without tangency (Figure 132);

then obviously d < R-R'. In thespecialcasewhen d = 0, the centers
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of both circles merge .(such circles\177re called concentric).

Remark. We let the reader to verify the converse theorems:

(1) If d > R + R', then the circles lie outside each other.
(2) If d= R q-R', then the circles are tangent externally.
(3) If d < R q- R' and at the same time d > R- R \177,then the

circles intersect.

(4) If d = R- R \177,then the circles are tangent internally.
(5) If d \177 R - R \177,then the circles lie one inside the other.
All these propositions \177re easily proved by contradiction.

121. Rotation about a point. Let a plane figure, for instance
AABC (Figure 133),be tied rigidly to some point O of the plane.
Imaginethat all pointsof the triangle, including its vertices, are
connected by segmentsto the point O, and that the whole figure
formed by these segments, remaining in the plane of the triangle,is
moving about the point O, say, in the direction shown by the arrow.

Let A\177B\177C \177be the new position occupied by the triangleABCafter

some time. Since we also assume that AABC doesnot change its

shape, we have: AB - A\177B \177,BC = B\177C \177,and CA = C\177A( Such

a transformation of a figure in its plane is calleda rotationabout
\177 point, and the point O itself is calledthe center of rotation.
Thus, in other words: a rotation about a centerO is a rigid motion

of a plane figure such that the distancefrom each point to the center
remains unchanged: AO = A\177O, BO = B\177O, CO = C\177O, etc. Ob-

viously, all points of the rotated figure describe concentric arcs with
the common center at the point O, whose radii are the distances of
the correspondingpointsfromthe center.

Figure 133

Notice that central angles (Figure 133)correspondingto the con-

centric arcs, described in equal times by different points of a rotated
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figure, are congruent to each other:

ZAOA\177=ZBOB\177=ZCOC\177=...

Indeed,the trianglesAOBand A\177OB \177are congruent by the SSS-test,
and therefore ZAOB = ZA\177OB \177. Adding the angle BOA \177to each

of them, we find: ZAOA\177= BOB( Similarly one can prove that
ZBOB\177= COG \177,etc.

The common angle of rotation of all the radiiis called the rota-

tion angle of the figure.
Vice versa, in order to construct the rotation of a planefigure

(e.g. the rotation AA\177B\177C\177 of AABC) about a given point O through
a-given rotation angie, it suffices to construct concentric arcs AA \177,

BB \177,CC \177,etc., directed the same way, and corresponding to the
anglesZAOA \177,ZBOB \177,ZCOC\177,..., congruent to the given rotation
angle.

EXERCISES

250. Find the geometric loc\177s of centers. of circles tangent to a given
circleat a given point.

251. Find the geometric locus of centers of circles described by a
given radius and tangent to a given circle (consider two cases: of
externaland internal tangency).

252. A secant to two congruent cirales,which is parallel to the line
of centers OO\177,meets the first circle at the points A and B, and the
second one at the points A \177and B( Prove that AA \177= BB \177= 00(

253.* Prove that the shortestsegment joining two non-intersecting
circles lies on the lineofcenters.
Hint: Apply the triangle, inequality.

254. Prove that if through an intersectionpoint of two circles, we

draw all secant segments without extendingthemto the exterior of

the disks, then the greatest of thesesecantswill be the one which is
parallel to the lineofcenters.
255.Construct a circle passing through a given point and tangent

to a given circle at another given point.
256. Constructa circletangent to two given parallel lines and to a
given disk lying between them.

257. Construct a circlethat hasa given radius, is tangent to a given
disk, and passes through a given point.. (Consider three cases: the
given point lies(a) outside the disk, (b) on the circle, (c) insidethe

disk.)
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4 Inscribed and some other angles
122. Inscribed angles. An angle formed by two chords drawn

from the same point of a circle is calledinscribed. Thus the angle

ABC in each of Figures 134-136is inscribed.
B

\275
c

D D

Figure 134 Figure 135 Figure 136

An angle is said to intercept an arc if it is contained in the

interior of the angle and connectsitssides.Thus the inscribed angle

ABC in Figure 135 intercepts the arcADC.
123.Theorem. An inscribed angle measures a half of the

subtendedarc. This theorem should be understood as follows: an
inscribedanglecontainsas many angular degrees as a half of the arc
it interceptscontains circular degrees.

In the proof of the theorem,considerthe following three cases.

(1) The center O (Figure 134) lieson a sideof the inscribed

angle ABC. Drawing the radius AO,-we obtain /kAOB such that

OA = OB (as radii), and henceZABO = ZBAO. The angle AOC
is exteriorwith respect to this triangle, and is congruent therefore
to the sum of the angles ABO .and BAO, which is twicethe angle
ABO. Thus the angle ABO is congruent to a half of the central
angle AOC. Butt the angle AOC is measured by the arc AC, i.e. it
contains as many angulardegrees,as the arc AC contains circular

degrees. Therefore the inscribedangleABCis measured by a half
of the arc AC.

(2)The center O lies in the interior of the inscribedangleABC
(Figure 135). Drawing the diameter BD we partition the angleABC
into two angles, of which (according to part (1))oneismeasured by

a half of the arc AD, and the other by a half of the arc DC. Thus

the angleABC is measured by the sum \253 AD +\253 DC, which is

\177AC.
congruent to \253(AD + DC), i.e. to \177
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(3) The centerO liesin the exterior of the inscribed angle ABC.
Drawing the diameterBDwe have

ZABC = ZABD -/CBD.

But the anglesABD and CBD are measured (according to part
(1)) by halves of the arcs AD and CD. Thereforethe angle ABC

is measured by the difference \253AD -\253 CD, which is congruent to

\253(AD - CD), i.e. to \253AC.

Figure 137 Figure 138

124. Corollaries. (1) All inscribed angles intercepting the

same arc are congruentto eachother (Figure 137), because each
of them measures a half of the samearc. If the measure of one of

such angles is denoted c\177, then one may say that the disk segment
Arab enclosesthe anglec\177.

(2) Any inscribed angle intercepting a diameter is right (Figure

138), because such an angle measures a half of the semicircle, and
therefore contains 90\370.

125. Theorem. The angle (ACD, Figure 140)formed by a

chord and a tangent measures a half of the interceptedarc,
(i.e.of the arc DC contained in the interior of the angle).

Letus assume first that the chord CD passes through the center
O,i.e. that it is a diameter (Figure 139). Then the angleACD is
right (\365113) and contains therefore 90 \370. But a half of the arc CmD
also contains90\370since the arc CmD, being a semicircle, contains
180\370. Thus the theorem holds true in this special case.

Conside\177 now the general case when the chord CD doesnotpass
through the center (see Figure 140, where/ACD is acute). Drawing

the diameter, CE we have:

ZACD = ZACE- ZDCE.



4. Inscribedand some other angles 99

The angle ACE, beingthe angleformedby a tangent and a diameter,
measures a half of the arcCDE. The angle DCE, being inscribed,
measures a half of the arcDE. Therefore the angle ACD is measured

by the difference \253CDE -\253 DE, i.e. by a half of the arc CD.
Similarly one can prove that an obtuse angle (BCD, Figure140),

alsoformed by a tangent and a chord, measures a half of the arc

CnED. The only distinction in ihe proofis that this angle is not
the difference, but the sumofthe right angle BCE and the inscribed
angle ECD.

D E

D

Figure 139 Figure 140

Remark. One may think of this theorem as a degenerate caseof
the previous theorem about inscribed angles. Namely, consider the
anglebetweena tangent and a chord, e.g. ZBCD in Figure 140,
and picka pointD\177on the intercepted arc. Then ZBCD becomes
the sum of ZBCD\177and the inscribed angle D\177CD.The arc CnD
interceptedby ZBCD also becomes-the sum of the corresponding
arcsCD\177and D\177nD. Now let the point D\177move along the circle

toward the point C. When D \177approaches C, the position of the
secant ray CD \177approaches the position of the tangent CB. Then

measuresofCD.'and ZBCD \177both approach zero, and measures of

D\177nD and ZD'CD approach those of CnD and/BCD respectively.
Tkus the property of the inscribed angle D'CD to measure a half

of D'nD, transforms into the property of the angleCBD between a

tangent and a chord to measure a half of the intercepted arc CnD.
126. Theorem. (1)An angle (ABC, Figure 141), whose vertex

lies inside a disk,is measuredby the semisum of two arcs
(AC and DE), one of which is intercepted by this a\177gle, and

the other by the angle vertical to it.
(2)'An angle (ABC, Figure 142), whose vertex lies outside
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a disk, and whose sides intersect the circle,is measuredby

the semidifference of the two intercepted arcs (AC and ED).
E

A C

E B

A

Figure 141 Figure 142

Drawing the chord AD (on each diagram),we obtain AABD for

which the angle ABC in questionis exterior, when its vertex lies
inside the disk, and interior, when it lies outside the disk. In the
first case therefore ZABC \177 ZADC + ZDAE, and in the second
case ZABC = ZADC-ZDAE. But the angles ADC and DAE, as
inscribed,aremeasured by halves of the arcs AC and DE. Thus in

the first case the angie ABC is measuredby the sum \253AC +\253 DE

congruent to \253(AC + DE), and in the second case by the difference

! AC-\253DE congruentto \253(AC- DE)2 '

EXERCISES

Computation problems

255. Computethe degreemeasure of an inscribed angle intercepting
an arc congruentto \177th part of the circle.

\17759. A disk is partitioned into two disk segmentsby a chord dividing

the circle in the proportion $: 7. Compute the angles enclosed by
these segments.

\17760. Two chords intersect at an angle 36\37015'30 '\177.Express in degrees:

minutes, and seconds the two arcs intercepted by this angle and the
angleverticalto it:if one of these arcs measures 2/3 of the other.
\17761. The angle between two tangents dragon from the samepoint to
s-circleis25\37015: Compute the arcs contained between the tangency
points.
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262. Compute the angleformedby a tangent .and a chord, if the
chorddivides the circle in the proportion 3: 7.
265. Two circles of the same radius intersect. at the angle 2d/3.
Express in degrees the smaller of the arcs containedbetweenthe
intersection points.

Remark: The angle between two intersecting arcs is defined as the

angle between the tangent lines to thesearcs drawn at the intersec-
tion point.
26J. A tangent is drawn through one endpoint of a 'diameterand a
secant through the other, so that they make the angle20\37030 \177.Com-

pute the smaller of the arcs containedbetween the tangent and the
secant.

Find the geometric locus of:
265.The feet of the perpendiculars dropped from a givenpoint A

to lines passing through another given point B.
266. The midpoints of chords passing through a point given inside
a disk.
267.Points from which a given circle is seen at a given angle (i.e.

the angle between two tangents to the given circle drawn from the
point is congruent to the given'angle).

Prove theorems:
265.If two circles are tangent, then any secant passing through

the tangency point cuts out on the ci_rcles opposed arcs of the same
angular measure.
269. Prove that if through the tangency point of two circles two

secants are drawn, then the chords connecting the endpointsof the
secants are parallel.

270. Two circles intersect at the points A and B, and through A, a
secant is drawn intersectingthe circles at the points C and D. Prove
that the measure of the angle CBD is constant, i.e. it is the same

for all such secants.

271. In a disk centeredat O, a chord AB is drawn and extended
by the segmentBC congruent to the radius. Through the point
C and the centerO, a secant CD is drawn, where D denotes the
secondintersection point with the circle. Prove that the angle
is congruent to the angle A\177'D tripled.

272. Through a point A of a circle, the tangent and a chord
are drawn. The diameter perpendicular to the radius OB meets
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the tangent and the chord(orits extension) at the points C and D
respectively.Provethat AC -

273. Let \177PA and PB be two tangents to a circledrawn from the

same point P, and let BC be a diameter. Prove that CA and
are parallel.
27\177. Through one of the two intersection points of two circles, a

diameter in each of the circlesis drawn. Prove that the line con-

necting the endpointsof thesediameters passes through the other
intersection point.

275. A diameter AB' and a chord AC form an angle of 30 \370. Through

C, the tangent is drawn intersectingthe extensionofAB at the point
D. Prove that AACD is isosceles.

5 Construction problems.

127.Problem. To construct a right triangle given its hypotenuse

a and a leg b (Figure 143). \337

b

D

Figure 143 Figure 144

On a lineMN, mark AB = a and describe a semicirclewith AB
as a diameter. (For this, bisect AB, and take the midpointfor the

center of the semicircle and \253AB for the radius.) Then draw an arc
of radius congruent to b centered at the point A (or B). Connect the
intersection point C of the arc and the semicircle, with the endpoints
of the diameterAB. The required triangle is ABC, since the angle
C is right (\365124), a is the hypotenuse, and b is a leg.

128.Problem.To erect a perpendicular to a ray AB (Figure
144) at the endpoint A without extending the ray beyondthis point.

-- Take outside the line AB any point O such that the circle, cen-
tered at O and ofradiuscongruent to the segment OA, intersects the
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ray AB at some point C. Through this point C, draw the diameter

CD and connect its endpoint D with A. The line AD is the required
perpendicular,becausethe angle A is right (as inscribed intercepting
a diameter).

129.Problem.Through a given point\177 to draw \177 tangent to a

given circle.
Consider two cases:
(1) Thegiven point (C, Figure 145) lies on the circle itself.Then

draw the radius to this point, and at its endpointC, erect the perpen-

dicular AB to this radius (e.g.as explained in the previous problem).

A C B

A

Figure 145 Figure 146

(2) The givenpoint (A, Figure 146) lies outside the disk bounded
by the given circle. Then, connecting A with the centerO, construct

the circle with AO as a diameter. Throughthe pointsB and B'

at which this circle intersects the given one, draw the lines/lB and
AB: These linesare the required tangents, since the angles OBA
and OB\177A are right (as inscribed intercepting a diameter).

Corollary. Two tangent segments, drawn to a circle from a
point outsidethe disk bounded by it, are congruent and form congru-

ent angles with the line connecting this point with the center. This

follows from the congruenceof the right triangles OBA and OB\177A

(Figure 146).

130. Problem. Given two circles, to construct a commontangent

(Figure 147).

(1) Analysis. Suppose that the problemhas beensolved.Let

/lB be a common tangent, A and B the tangency points. Obviously,
if we find one of these points, e.g. A, then we can easily find the

other. Draw the radii OA and O'B. These.radii,being perpendicular

to the common tangent, are parallel to eachother. Therefore, if

we draw through O' the line O'C parallelto BA, then O\177C will be

perpendicular to OC. Thus, if we draw a circle of radius OC centered



104 C\177hapter 2. THE CIRCLE

at O, then O'C will be tangent to it at the point C. The radius of

this auxiliary circle is \270A - CA = \270A - \270'B,i.e. it is congruent to
the difference of the radii of the given circles.

A

Figure 147 Figure 148

Construction. Thus the requiredconstructioncan be performed

as follows. Describe the circle centeredat O of radius congruent to

the difference of the given radii. From6)', draw a tangent-O'C to this
circle (as describedin the prsvious problem). Through the point C,
draw the radiusOCand extend it beyond C up to the intersection
pointA with the given circle. Finally, through the point A, draw the
line AB parallel to CO(

Research. Theconstruction is possible when the center 6)' lies in
the exteriorofthe auxiliary circle. In this case we obtain two common
tangentsto the circles, each parallel to one of the two tangents from

the point 6)' to the auxiliary circle.Thesetwo common tangents are
called external.

For the point 6)' to be in the exterior of the auxiliary circle,
the segment 6)0' has to be greater than the difference of the radii
of the given circles. According to the results of \365120, this is true

unless one of the given disks containsthe other. When one of the

circles lies inside the other,obviously, no common tangent is possible.
When the circleshave an internal tangency, the perpendicular to the
line of centerserected at the tangency point is, evidently, the only

common tangent of the circles. Otherwise, i.e. when neitherof the
diskscontainsthe other,there exist, as we have seen, two external
commontangents. \"

When the two given circles. do not intersect, i.e. when OO' is

greater than the sum of the given radii, therealsoexist two inter-

nal common tangents (Figure 148) which can be constructed as
follows.

(2) Analysis. Suppose that the problemhas beensolved, and
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let AB be sucha common tangent. Draw the radii OA and OrB to
the tangency points A and B. These radii, being perpendicularto
the common tangent, are parallel to each other.. Thus, if we draw

from O r the line O'CIIBA and extendthe radius OA beyond A to its
intersection with O\177C at the point C, then OC will be perpendicular
to O'C.Therefore the auxiliary circle described about the center O
by the radius OC will be tangent to the line O\177C at the point C.
The radius of the auxiliary circle is OA + AC = OA + OrB,i.e.it is
congruent to the sum of the radii of the given circles.

Construction. Thus the construction can be performed this
way: draw the circle centered at O of radius congruentto the sum of

the given radii. From the point Or, draw a line O'C tangent to the
auxiliary circleat the pointC. Connect the tangency point C with
O, and throughthe intersectionpoint A of OC with the circle, draw
the line AB tt CO(

The second internal common tangent is parallelto the other tan-

gent from (P' to the auxiliary circleand is constructedsimilarly.

When the segment O(P \177is congruent to the sum of the given
radii,the two given circles have an external tangency (\365120). In this

case, the perpendiculax to the lineofcenterserected at the tangency

point is, evidently, the 0nly internal common tangent of the circles.
Finally, when the two disks overlap, no internal tangents exist.

131. Problem. On a given segment AB, to construct a disk
segmentenclosinga given angle (Figure 149).

Analysis. Suppose that the problemhas beensolved, and let

Arab be a disk segment enclosingthe-given angle c\177, i.e. such that

any angle ACB inscribed in it is congruent to c\177. Draw the auxiliary

line AE tangent to the circleat the point A. Then the angle BAE
formed by the tangent and the chord AB, is also congruent to the

inscribed angle ACB, since both measurea half of the arc AnB.
Now let us take into accountthat the centerO ofthe circle lies on

the perpendicular bisector DO of the chord AB, and at the same
time on the perpendicular(A(P) to the tangent (AE) erected at the
tangencypoint.Thissuggests the following construction.

Construction. At the endpoint A of the segment AB, construct
an angle BAE congruent to \177. At the midpoint of AB erect the
perpendiculari)0, and at the point A, erect the perpendicular to
AE. Taking the intersection point (P of these perpendiculars for the

center, describe the circle of radius A(P.

Proof. Any angle inscribed into the disk segmentArab ismea-

sured by a half of the arc AnB, and the half of this arc is also the
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measure of ZBAE = \177. Thus Arab is the required disk segment.
Remark. On Figure149,the disk segment Arab enclosing the

angle \177, is constructed on the upper side of the line AB. Another

such disk segment can be constructed symmetric to Arab about the
axisAB.Thus,onecouldsay that the geometric locus of points, from
which a given line segmentAB is seen at a given angle c\177, consists of.

the arcs of two disk segments, eachenclosingthe given angle, which

are symmetric to each other about the axis AB.

A

\177E

Figure 149 Figure 150

132. The method of geometricloci.Many construction prob-

lems can be successfully approached usingthe concept of geometric

locus. This method, known already to Plato(4th century B.C.), can
be described as follows.Supposethat a proposedproblem consists ]n

finding a point which has to satisfy certain conditions. Discard one
of these conditions; then the problem becomes under-determined:

it may admit infinitely many solutions,i.e. infinitely many points

satisfying the remaining conditions. These points form a geometric

locus. Construct this locus if possible. Then reinstallthe previously

discarded condition, but discard another one; the problemwill again

have infinitely many solutions which will form another geometric lo-

cus. Construct it if possible. A point satisfying all the conditions of
the originalproblembelongstobothgeometric loci, i.e. it must lie
in their intersection. The constructionwill be possible or impossible
depending on whether the lociintersect or not, and the problem will
have as many solutions as there are intersection points. Let us illus-
trate this method by an example, which also shows that sometimes
adding auxiliary lines to a diagram can be useful.

-\" 133. Problem. To construct a triangle, given its base a, the

angle at the vertex A, and the sum s of the lateral sides.
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Let ABC\177(Figure.150) be the required triangle. In order to add
to the diagram the given sum of lateral sides, let us extend BA past

A and mark on it the segmentB.\177 = $. Connecting M with (\177, we

obtain an auxiliary triangle BM(\177. If we manage to construct this
triangle, then we can easily construct the required trian\365le

Indeed, note that the triangle C'AA\177 is isosceles (A(\177 = AA\177), and

hence \1774can be found as the intersection of \177.\177 with the perpendic-

ular bisector of

The constructionof the triangle\177M\177 reduces to finding the

point M. Since the triangleCAA\177 is isosceles, we have Z\177/\177 =

/_M\177A = \177/.-]\177A\177. We see that the point .\177 must satisfy two

conditions: (1) it has distances from B, and (2) the angle at which
the segment\177C is seen from A\177 is congruent to \253ZA. Thus the con-
struction of \177 reduces to intersecting two geometric loci such that
we know how to construct each of them. The problemhas no solu-

tion when these loci do not intersect,and has one or two solutions
depending on whetherthe lociare tangent to each other or intersect.
On our diagram,we obtain two (congruent!) triangles AB\177 and

\177VB\177 satisfying the requirements of the problem.

Sometimesa problemrequires finding a line (rather than a point)
satisfying several conditions. Discarding one of the conditions, we
will obtain infinitely many lines satisfying the remaining conditions.
It may happen that all such lines can be describedin termsofa cer-
tain curve (for instance, as all lines tangent to a certain circle). Dis-

carding another condition and reinstailing the previously discarded

one, we will obtain infinitely many lines again, which may define

some other. curve. Constructing, if possible, both curves we then
determine the requiredline.Let us give an example.

134. Problem. To draw a secant of two given disks \177 and \177,

so that the segments of the secant containedinsidethe disks are con-

gruent respectively to two given segmentsa and a\177.

If we take into account only one of the requirements,for example,

thst the part of the secant insidethe disk (9 is congruent to a, then
we obtain infinitely many secants Which h\177ve to be equidistant from
the center of the disk (sincecongruent chords are equidistant from

the center). Therefore, if we construct \177nside \177 \177 chord congruent

to a and then describe the circleconcentric to \177 of radius congruent

to the distance from the chord to the center, then all the secants
in question will be tangent to this auxiliary circle. Similarly, taking

into account only the second condition, we will see that the required
secant must be tsngent to the second auxiliary c\177rcle concentric to
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(9( Thus the problem reducesto constructing a common tangent to
two circles.

EXERCISES

Prove theorems

276.Given two circles with external tangency, prove that the com-
mon tangent passing through the tangency point, bisects the seg-
ments of external common tangents bounded by the tangencypoints.
277.To two circles tangent externally at a point A, a common exter-

nal tangent BC is drawn (whereB and C are the tangency points).
Prove that the angleBACis right.

Hint: Draw through A a commontangentandexaminethe triangles

ABD and ADC.

Construction problems

278. Given two points, construct a line such that the perpendiculars
droppedfrom these points to'this line have given lengths.
279. Constructa line making a given angle with a given line and
tangent to a given circle. (How many solutions are there?)
280. From a point outside a disk, construct a secant such that its

segment inside the disk is congruentto a given segment.

281. Construct a circle that has a given radius, and is tangent to a
given line and a given circle.

282.* Construct a circle tangent to a given line and tangent to a
given circle at a given point (two solutions).

283. Construct a circle tangent to a given circle and tangent to a
given line at a given point (two solutions).

285. Construct a circle that has a given radius and cuts out chords
of given lengthson the sides of a given angle.
285. Constructa disk tangent to two given disks, and to oneofthem
at a given point. (Consider three cases: the required disk contains
(1)bothgiven disks, (2) one of them, (3) none of them.)
286. Construct a circle tangent (externally or internally) to three
given congruent circles.

287.* Into a given circle, inscribethreecongruent di\177ks tangent to

each other and to the given circle.

288.* Through a given point inside a disk,draw a chord such that

the difference of its segmentsis congruent to a given segment.



5. Construction problems 109

Hint: Draw the concentric circle passing through the given point,
and constructin this circle a chord of the given length.
259. Through an intersection point of two circles, draw a secantsuch

that its segment inside the given disks is congruent to a given length.
Hint: Construct a right trianglewhose hypotenuse is the segment
between the centers ofthe given disks, and one of the legs is congruent
to a half of the given length.

290. From a point outsidea disk,draw a secant ray such that its
external and internalparts are congruent.

Hint: Let O be the center of the disk,/\177 its radius, and A the given
point. Construct /NAOB, where AB = R, OB = 2R. If C is the
midpoint of the segment OB, then the line AC is the required one.

291. Construct a circle tangent to two given non-parallel lines (1) if
the radius is given, (2) if instead6neofthe tangency points is given.

292. On a given line,find a point from which a given segment isseen
at a given angle.

293. Construct a triangle, given its base, the angleat the vertex,

and the altitude.

29.4. Construct a triangle, given one of its anglesand two of its

altitudes, one of which is drawn from the vertex of the given angle.
295. Constructa tangent to the arc of a given sector suchthat the
segment of the tangent between the extensions of the radii bounding

the sector is congruent to a given segment.
Hint: Reducethe problem to the previous one.

296. Construct a triangle,given its base, the angie at the vertex;
and the median bisecting the base.

297. Given the positions of two segments a and b in the plane, find

a point from which the segment a is seenat a given angle c\177, and the

segment b at a given angiefl.
298. In a given triangle, find a point from which its sidesare seen

at the same angle.

299.* Construct a triangle, given its angle at the vertex, and the
altitude and the mediandrawn to the base.

Hint: Double the median extendingit past the base, connect the

endpoint with the verticesat the base,and consider the parallelogram
thus formed.

300.* Construct a triangle,given its base, an angle adjacent to the
base, and the angiebetweenthe median drawn from the vertex of
the first given angle and the sideto which this median is drawn.

301. Construct a parallelogram,given its diagonals and an angle.
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302.* Construct a triangle, given its base, its angleat the vertex,

and the sum or the differenceof the othertwo sides.

303. Construct a quadrilateral, given its diagonals,two adjacent

sides, and the angle between the two remaining sides.

$OJ. \177 Given three points A, B, and C, construct a line passing

through A such that the distance betweenthe perpendicularstothis
line dropped from the points B and C is congruentto a given seg-

ment.

6 Inscribed and circumscribed polygons

135.Definitions. Ifallvertices of a polygon (ABCDE, Figure
151) lie on a circle,then the polygon is called inscribed into the
circle,and the circleis called circumscribed about the polygon.

If all sides of a polygon (MNPQ, Figure 151) are tangent to a
circle,then the polygon is called circumscribed about the circle,
and the circleis called inscribed into the polygon.

N M

Figure 151 Figure 152

136. Theorems. (1) About any triangle, a circle can be
circumscribed, and sucha circleis unique.

(2) Into any triangle, a circle can be inscribed, and such
a circleis unique.

(1) Vertices A, B, and C of any triangle are non-collinear.As we

have seen in \365104, any three such points lie on a circle,and such a

circle is unique.

-- (2) If a circletangent to all sides of a triangle.ABC exists (Figure
152),then the center must be a point equidistant from these sides.
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Let us prove that such a point exists. The geometriclocusofpoints
equidistant from the sides AB and AC is the bisectorAM of the

angle .4 (\36558). The geometric locus of points equidistant from the
sides BA and BC is the bisector BN of the angle B. Thesetwo

bisectors will, evidently, intersect inside the triangle at somepointO.
This point will be equidistant from all the sidesof the triangle, since

it lies in both geometricloci.Thus,in order to inscribe a circle into
a triangle,bisecttwo of its angles, say A and B, take the intersection
point of the bisectors for the center, and take for the radius any of
the perpendiculars OP, OQ,or OR, dropped from the center to the
sides of the triangle.The circle will be tangent to the sides at the
pointsP, Q,and R, since at these points the sidesare perpendicular
to the radii at their endpoints lying on the circle (\365113). Another

such an inscribed circle cannot exist, sincetwo bisectors can intersect

only at one point, and from a point only one perpendicular to a line
canbedropped.

Remark. We leave it to the reader to verify that the center of the
circumscribed circle liesinsidethe triangleif and only if the triangle
is scalene. For an obtusetriangle, the center lies outside it, and for a

right triangle at the midpoint of the hypotenuse.The center of the

inscribed circle always lies inside the triangle.

Corollary. The point O (Figure 152), being equidistant from

the sides CA and CB, must lie onthe bisectorof the angle C. There-

fore bisectors of the three anglesof a triangleintersectat one point.

Figure 153
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137.Exscribedcircles.The circles tangent.to one side of a
triangle and to the extensions of two other sides (such circles lie
outsidethe triangle, Figure 153) are called exscribed. Each triangle
has three such circles. To construct them, draw bisectors of the
exterioranglesofthe triangleABe,and take their intersection points
for the centers. Thus,the center of the circle inscribed into the angle
A, is the point O, i.e. the intersection pointofthe bisectorsBOand

CO of the exterior angles not supplementary to A. The radius of

this circle is the perpendiculardroppedfrom O to any of the sides
of the triangle.

138.Inscribedquadrilaterals.(1)In a convex inscribed

quadrilateral, the sum of opposite angles is congruent to
two right angles.

(2) Conversely, if a convex quadrilateral has the sumof
oppositeangles congruent to two right angles\177 then it can
be circumscribed by a circle.

(1)Let ABCD (Figure 154) be an inscribedconvexquadrilateral;
it is required to prove that

LB + ZD = 2d and LA + LC = 2d.

Since the sum of all the four angles of any convex quadrilateral is
4d (\36582), then it suffices to prove only one of the requiredequalities.
Let us prove for example that LB + zSD = 2d.

The angles B and D, as inscribed, are measured: the former by a
half of the arcADO,and the latterby a half of the arc ABC. There-

fore the sum \177B + \177D is measured by the sum \253 ADC +\253 ABC,

which is congruent to \253(ADC + ABC), i.e. a half of the whole
circle.Thus ZB + LD = 180\370= 2d.

(2) Let ABCD (Figure 154)bea convex quadrilateral such that

LB + LD = 2d,and thereforeZA + LC = 2d. It is requiredto prove

that a circle can be circumscribed about sucha quadrilateral.

Through any three vertices of it, say through A, B, and C, draw
a circle (which is always possible). The fourth vertex D must lie on
this circle.Indeed,ifit didn't,it would lie either inside the disk, or
outside it. In eithercasethe angie D would not measure a half of
the are ABC,and therefore the sum LB + LD would not measure
the semisum of the arcs ADC and ABC. Thusthis sumwould differ

from 2d, which contradicts the hypothesis.
--Corollaries. (1) Among all parallelograms, rectangles are the

only ones which can be circumscribed by a circle.
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(2) A trapezoid can be circumscribedby a circle only if it is isosce-
les.

139.Circumscribedquadrilaterals.In a circumscribed

quadrilateral, the sums of opposite sides are congruent.
Let ABCD(Figure 155) be a circumscribed quadrilateral, i.e.

the sidesof it are tangent tO a circle. It is required to prove that

AB + CD = BC + AD.
Denotethe tangency points by the letters M, N, P, and Q. Since

two tangents drawn from the same point to a circle are congruent, we

have AM = AQ, BM = BN,CN= CP,and DP = DQ. Therefore

AM + MB + CP+PD=AQ + QD + BN + NC,
i.e. AB + CD =AD + BC.

Figure 154 Figure 155

EXERCISES

305. Into a given circle,inscribea triangle whose angles are given.

306. About a given circle,circumscribea triangle whose angles are

given.

307. Construct a triangle,given the radius of its inscribed circle, the
angleat the vertex, and the altitude.

$08. Into a given circle, inscribea triangle, given the sum of two of
its sidesand the angleoppositeto one of them.

$09. Into a given circle, inscribea quadrilateral, given 'one of its
sides, and both anglesnot adjacentto it.
$10.Inscribe a circle into a given rhombus.

311. Into a given sector, inscribe a circle tangent to the radii and

the arc bounding the sector.
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312.* Into an equilateral triangle, inscribe three diskswhich are

pairwise tangent to each other, and eachof them is tangent to two

sides of the triangle.
313. Constructa quadrilateral assuming that it can be circumscribed
by a circle,and that three of its sides and a diagonalare given.

31.\177. Construct a rhombus, given its side and the radius of the in-
scribed circle.

315. Circumscribe an isoscelesright triangle about a given circle.
316. Construct an isoscelestriangle, given its base and the radius of
the inscribedcircle.
317.*Through two given points on a circle, construct two parallel

chords with a given sum.

318.* On a circlecircumscribed about an equilateral AABC, a point
M is taken.Prove that the greatest of the segments MA, MB, MC
is congruent to the sum of the other two.
319.*Thefeet of perpendiculars dropped from a point of a circleto
the sides of an inscribed triangle lie on thesameline (called Simsoh's

line). ,

Hint: A proof is based on properties of inscribed angles(\365123), and

angles of inscribed quadrilaterals (\365138).

Four concurrency points in a triangle

140.We have seen. that:

.(1) the three perpendicular bisectorsto the sides of a triangle
intersect at one point (which is the center of the circumscribed circle
and is often called the circumcenter of the triangle);

(2) the threebisectorsof the angles of a triangle intersect at one
point (which is the center of the inscribed circle, and often called

incenter of the triangle).

The following two theorems point out two more remarkable points

in a triangle: (3) the intersectionpointof the three altitudes, and
(4) the intersection point of the threemedians.

141. Theorem. Three altitudes of a triangle intersect at
onepoint.

Through each vertex of AABC (Figure 156), draw the linepar-
allel to the opposite side of the triangle. Thenwe obtain an auxiliary
triangle A'B'C \177whose sides are perpendicular to the altitudes of the
given triangle. Since C\177B = AC = BA' (as opposite sidesofparallel-
ograms), then the point B is the midpoint of the sideA'C( Similarly,
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C is the midpoint of A'B' and A of B'C t. Thus the altitudes AD,

BE, and CF of AABC.are perpendicular bisectors to the sides of
AA'B'C', and suchperpendiculars,as we know from \365104, intersect

at one point.

Remark. The point wherethe three altitudes of a triangle in-
tersect is called its orthocenter. The reader may prove that the

orthocenter of an acutetriangleliesinside the triangle, of an obtuse
triangle outside it, and for a right triangle coincides with the vertex
of the right angie.

C' B

'F\"- D

B

C

Figure 156 Figure 157

142. Theorem. The th\177;ee medians of a triangle intersect
at one point\177 this point cuts a third part of each median
measuredf\177rom the corresponding side.

In AABC (Figure 157),take any two medians, e.g. AE and
intersecting at a point O, and prove that

OD= \177BD, and OE= AE.

Forthis, bisectOA and OB at the points F and G and considerthe
quadrilateralDEGF.Since the segment FG connects the midpoints
of two sides of AABO,then FGltABand FG = \253AB. The segment

DE, too, connects the midpoints of two sides of AABC, and hence
DE lAB and DE = \253AB. From this we conclude that DE] FG and
DE = FG,and therefore the quadrilateral DEGF is a parallelog\177ram

(\36586). It follows that OF = OE and OD = OG,i.e.that OE --

and OD = \253BD.

If we consider now the third median and oneofthe medians AE

or BD, then we similarly find that their intersection point cuts from
each of them a third part measured from the foot. Therefore the
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third median must intersect the medians AE and ND at the very

same point O.

Remarks. (1) It is known from physics that the intersection point
of the mediansofa triangle is the center oi\177 mass (or centroid) of
it, also calledbarycenter; it always lies inside the triangle.

(2) Three (or more) linesintersecting at one point are called
concurrent. Thus we can say that the orthocenter, barycenter,
incenter and circumcenter of a triangleare concurrency points of its

altitudes, medians, angle bisectors,andperpendicularbisectorsofits
sidesrespectively.

EXERCISES

320.

from

321.

322.
of its

Constructa triangle, given its base and two medians drawn
the endpointsof the base.
Construct a triangle, given its three medians.
Into a given circle, inscribe a triangle such that the extensions
anglebisectorsintersect the circle at three' give\177. points.

Into a given circle, inscribe a trianglesuch that the extensions

of its altitudes intersect the circleat three given points.

32\177.* Construct a triangle given its circumscribedcircleand the

three points on it at which the altitude, the anglebisectorand the

median, drawn from the same vertex, intersectthe circle.
325.*Prove that connecting the feet of the altitudes of a given tri-

angle, we obtain another triangle for which the altitudes of the given
triangle are anglebisectors.
326.*Prove that the barycenter of a triangle lies onthe line segment

connecting the circumcenter and the orthocenter, and that it cutsa
third part of this segment measured from the circumcenter.
Remark:This segmentis called Euler's line of the triangle.
327.* Provethat for every triangle, the following nine points lie on
the samecircle (called Euler's circle, or the nine-point circle of

the triangle): three midpoints of the sides, threefeetofthe altitudes,
and three midpoints of the segments connecting the orthocenterwith

the vertices of the triangle.

328.* Prove that for every triangle, the center of Euler's circle lies
on Euler'sline and bisects it.

Remark: Moreover, according to Feuerbach's theorem, for every

triangle, the nine-point circle is tangent to the inscribedand all three

exscribed circles.
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SiMILARiTY

1 Mensuration

143.Theproblem of mensuration. So far, comparing two
segments,wewereabletodetermine if they are congruent, and if they
are not then which of them is greater (\3656). We have encountered

this task when studying relationshipsbetweensidesand angles of

triangles (\365\36544, 45), the triangle inequality (\365\36548-50), and some other

topics (\365\36551-53, 109-111, 120). Yet such comparison of segments
doesnot provide an accurate idea about their magnitudes.

Nowwe posethe problem of establishing precisely the concept of
length of segmentsand expressinglengths by means of numbers.

M

A\177 I 1' I 3 I s

C\177D

Figure 158

144. A common measure of two segments is a third segment
such that it is contained in each of the first two a whole number of
times with no remainder. Thus, if a segment AM (Figure 158) is
contained 5 times in AB and 3 times in CD, then AM is a common

measure of AB and eD. One can similarly talk about common

measures of two arcs of the sameradius, of two angles, and more
generally of any two quantities of the same denomination.

Evidently, if the segment AM is a common measureof the seg-

117
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ments AB and CD, then dividing AM into 2, 3, 4, etc. congruent
parts we obtain smaller common measures of the same segments.
Therefore,if two segments have a common measure, one can say

that they have infinitely many common measures. Oneof themwill

be the greatest.

145. The greatest common measure. Finding the greatest

common measure of two segments is done by the method of con-
secutive exhaustion, quite similarto the method of consecutive

division which is used in arithmeticfor finding the greatest common
factor of two wholenumbers.Themethod(alsocalledtheEuclidean
algorithm)isbased on the following general facts.

b

Figure 159 Figure 160

(1)/y the smaller one of two segments (a and b, Figure 159)
is contained in the greateronea whole number of times

with no remainder, then the greatestcommonmeasureof

the two segments is the smaller segment.
Let a segment b be contained in a segment a exactly,say, 3 times.

Since b is, of course, containedin itself once, then b is a commou
measureof a and b. This common measure is the greatest sinceno

segment greater than b can be contained in b a whole number of
times.

(2) If the smaller one of two segments (b in Figure 160)
is contained in the greaterone(a) a whole number of times
with some remainder (r), then thegreatestcommonmeasure
of these segments (if it exists) must be the greatest common
measureof thesmaller segment (b) and the remainder (r).'

Let, for instance,

a=b+b+b+r.

We can derive from this equality two conclusions:

(i) If there exists a segment fitting some number of times (i.e.
without remainder)into b and some number of times into r, then
it alsofits a whole number of times into a. For instance,if some

segment is contained in b exactly'5 times, and in r exactly2 times,

then it is contained in a exactly 5 q- 5 + 5 q- 2 = 17 times.
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(ii) Conversely, if .there exists a segmentfitting several times,

without remainder, into a and b, then it alsofits without remainder

into r. For example, if some segmentis containe.d in a exactly 17

times, and in b exactly 5 times,then it is contained exactly 15 times

in that part of the segmenta which is congruent to 3b. Therefore in
the remaining part of a, i.e. in r, it is contained 17 - 15-- 2 times

exactly.

Thus the two pairs of segments: a and b, and b and r, have the
same commonmeasures(if they exist), and therefore their greatest
commonmeasuresalsohave to be the same.

These two theorems shouldalsobesupplemented by the following

Archimedes' axiom:

However long is the greater segment(a),and however

short is the smaller one (b), subtracting consecutively1,2,3,
etc. timesthe smaller segment from the greater one, we will
always find that after some m-th subtraction, either there is
no remainderlef!,or there is a remainder which is smaller
than the smallersegment(b). In other words, it is always possible
to find a su\177ciently large whole number m such that eithermb- a,
ormb<a< (m + l )b.

A E B

C F D

t I I I

Figure 161

146. The Euclidean algorithm. Supposeit is requiredto find

the greatest common measure of two given segments AB and CD
(Figure 161).

Using a compass, exhaust the greater segmentby marking on it

the smaller one as many times as possible. According to Archimedes'
axiom, one of two outcomes will occur: either (1) CD will fit into

AB several times with no remainder, and then accordingto the ist
theorem the required measure will be CD, or (2) there will be a

remainder EB smaller than CD (as in Figure 161). According to
the second theorem, the problemwill then reduce to finding the
greatest commonmeasureof the two smaller segments, namely CD
and the remainder EB. To find it, do as before, i.e. exhaust CD
by marking on it EB as many times as possible.Again, one of two

outcomes' will occur: either (1) EB will fit into CD several times



with no remainder,and then the requiredmeasure will be EB, or

(2) there will be a remainderFD smaller than EB (as in Figure
161). The problemis then reduced to finding the greatest common
measure of another pairof smaller segments, namely \177B. and the

second remainder

Continuing this process further, we can encounteroneof the fol-

lowing two cases:

(i) after some exhaustionstep there will be no remainder left, or

(ii) the processof consecutive exhaustion will continue indefinitely
(assuming that we can marksegments as small as desired, which is
possible, of course,only theoretically).

In the former case, the last remainderwill be the greatest common.

measure of the given segments.Onecan similarly find the greatest

common measure of two arcs of the same radius, of two angles, etc.
In the lattercase,the given segments cannot have any common

measure. Toseethis,let us assume that the given segments ,4B and
CD have a common measure. This measure, as we have seen,must

be contained a whole number of times not only in \1774B and CD, but

also in the remainder EB, and thereforein the second remainder

FD, and in the third, and in the fourth, and so on. Since these
remaindersbecomesmaller and smaller, each of them will contain
the commonmeasurefewer times than the previous one. For in-
stance,if \177B contains the common measure 100 times (ingeneral
times), then FD contains it fewer than 100 times, i.e. 99at most.

The next remainder contains it fewer than 99times,i.e.98at most,

and so on. Since the decreasing sequenceof positivewhole numbers:

100, 99, 98,... (in general m, n\177- 1, zn - 2,... ) terminates (however

large zn is), then the process of consecutive exhaustion must termi-
nate as well, i.e. no remainder will be left. Thus, if the process of

consecutive exhaustion never ends, then the given segments cannot
have a common measure.

147. Commensurable and incommensurable segments.
Two segments are called commensurable if they have a commonmea-
sure, and incommensurable if such a common measure doesnot exist.

Existence of incommensurable segments cannot be discovered ex-
perimentally. In.the processof endless consecutive exhaustion we
will always encounter a remainderso small that it will slsps\177r to fit

the previous remainder a whole number of times: limitationsof our
instruments (compass) and our senses (vision) will not allow us to
-determine if there is any remainder left. However,incommensurable
segmentsdoexist,as we will now



1. Mensuration 121

148. Theorem. The .diagonalof a squareis incommensu-

rable to its side.

Since the'diagonal dividesthe squareintotwo isosceles right trian-

gles, then this theorem can be rephrased this way: the hypotenuse
of an isosceles right triangle is incommensurableto its leg.

Let us prove first the following property of such a triangle:if
we mark on the hypotenuse AC (Figure 162) of AABC the segment

AD congruent to the leg, and draw DE _L AC, then the right triangle
DEC thus formedwill be isosceles, and the part BE of the legBC
will be congruent to the part DC of the hypotenuse.

To prove this, draw the line BD and consideranglesof the trian-

gles DEC and BED. Since the triangle ABC is right and isosceles,

then/1 = Z4, and therefore/1 = 45\370. Therefore in the right trian-
gle DEC we have /2 = 45 \370too, so that ADEC has two congruent
angles,and hencetwo congruent sides DE and DC.

A C

Figure 162

Furthermore, in the triangle BED, the angle3 is congruent to

the right angle B minus the angleABD,and the angle 5 is congruent
to the right angleADE lessthe angle ADB. But/ADB = _/..ABD
(since AB = AD), and hence /3 = /5. Then the triangleBED
must be isosceles, and therefore BE = DE = DC.

Having noted this, let us apply the Euclidean algorithmto the

segments AB and AC. '
Since AC > AB andAC < AB + BC, i.e. AC \177 2AB, then

the leg AB fits the hypotenuseAC only once, and the remainder
is DC. Now we have to use the remainder DC to exhaustAB,
or equivalently, BC. But the segment BE is congruentto DC by
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the above observation. Thereforewe need to further mark DC' of
EC. But EC is the hypotenuse of the isosceles right triangle DEC.
Thereforethe Euclideanalgorithm now reduces to exhausting the
hypotenuse EC of an isosceles right triangle by its leg DO. In its
turn, this process will reduce to exhausting the hypotenuseofa new,

smaller isosceles right triangle by its leg, and so on, indefinitely.

Obviously, this process never ends, and therefore a commonmeasure

of the segments AC and \1774B does not exist.

149. Lengths of segments. The length of a segment is ex-
pressed by a number obtained by comparing this segment with an-
otherone,called the unit of length, such as e.g. meter\177 centimeter,

yard, or inch.

Suppose we need to measurea given segment a (Figure 163) using
a unit b, commensurable with a. If the greatest commonmeasureof

a and b is the unit b itself, then the length of a is expressed by a

whole number. For instance, when b is contained in a three times,
one says that the length of a is equal to 3 units (i.e. a = 3b). If the
greatest commonmeasureof a and b is a part of b, then the length

is expressed by a fraction. F6r example, if \254b is a common measure,
and it is containedin a nine times, then one says that the length of

a is equal to 9/4 units (i.e. a = \177b).

Whole numbers and \313actions are called rational numbers.
Thus, the length of a segment commensurabIe with a unit of length

is expressed by a rational number telling us how many times some
fractionof the .unit is contained in the given segment.

I\177 a

Illill:lillE[El

L..., a\" \177,,\177rI

b

Figure 163 figure 164

150. Approximations. The discovery of incommensurable seg-

ments was made by ancient Greeks.It shows that rational num-

bers are, generally speaking, insufficient for expressing lengths of
segments. For instance, accordingto \365148, no rational number can
e-Xpress the length of the diagonalof a square, when its side is taken
for the unit of length.
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Measuringa segment-a incommensurable with the unit b is done
indirectly: instead of the segmenta, onemeasures other segments

commensurable with the unit and such that they, differ from et by as
little as onewishes.Namely, suppose we want to find commensurable
segments that would differ from a by less than \177 b. Then divide the
unit into 10 equal parts (Figure164)and repeat one such part as
many times as neededto exhaust a. Suppose \177-\177bis \177ontained in

a thirteen times with a remaindersmaller than \1770b. We obtain a

segment a\177commensurable with b' and smaller than a. Adding \177b

once more, we obtain another segment a\177also commensurable with

b and greater than a. The lengths of the segments a \177and a \177 are

expressed by the fractions 13/10 and 14/10. Thesenumbers are

considered as approximations to the length of the segmenta, the

first from below, the second from above. Sincethey both differ

from a by 'less than \177th of the unit, one says that each of them
expressesthe length with the precision of up to \177 (or with the

error smaller than \1770)'

In general, to approximate the length of a segmenta with the
1

precision of up to \177th of a unit \177, one divides the unit into n equal
1th partofthe unit is containedparts and finds how many times the \177

in a. If it is contained ra times with a remainder smaller than 2b

m and ra+l are said to approximate thethen the rationalnumbers \177 n

length of a with the precision of up to \177, the first from below, and
the second from above.

151. Irrational numbers. The precise length of a segmentin-
commensurable with the unit of length-is expressed by an irrational
number.1 It can be represented by an infinite decimal fraction
constructedas follows. One consecutively computes approximations

from below for the length of the segment a with the precisionof up

to 0.1, then up to 0.01, then up to 0.001,and continues this process

indefinitely, each time improving the precision10times.This way,

one obtains decimal fractions first with oneplaceafter the decimal

\177The first definition of irrational numbers, usually attributed to a Greek math-
ematician Eudoxus (408- 355 B.C.), is found in Book 5 ofEuclid's\"Elements.\"

Given a segment incommensurable with the unit of length, all segments commen-
sur\177tble with the unit (and respectively all fractions m/n expressing their lengths)
are partitioned into two disjoint groups: those which are smaller than the given
segment, and thosewhich are greater. According to Eudoxus, an irrational num-

ber/s such a partition (a cut, in the modern terminology) of' the set of all rational
numbers. This somewhat abstract construction coincides with one of the modern
definitions of irrational numbers proposed by R. Dedekind [2] in the late 19th
century.
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point, then with two, ther/with three,and further on with more and
more decimal places.

The result of this infinite process is an infinite decimal fraction.

It cannot be written, of course, on a pagesincethe number of dec-

imal places is infinite. Nevertheless,an infinite decimal fraction is

considered known when a rulewhich determines any finite number
of its decimal signsis known.

Thus, the length of a segment incommensurablewith the unit of

length is expressed by an infinite decimal fraction whose finite parts
expresslengths of segments commensurable with the unit and approx\177

imatin# the given segment with the errors that become consecutively
smaller than 1/10th part of the unit, 1/100th, 1/1000th, and so on.

152. Remarks. (1)Thesame infinite decimal fraction can be ob-
tained by using approximations to the irrational number from above

rather than from below. Indeed, two approximations taken with the

same precision, one from above, the other from below,differ only

in the rightmost decimal place. When the precisionimproves,the
rightmostplacemoves farther and farther to the right, thus leaving
behindthe same sequence of'decimal signs in both fractions.

(2) Thesamemethod of decimal approximations applies to a seg-
ment commensurablewith the unit of length. The result will be the
rational number, expressing the length of the segment and repre-
sentedas an (infinite) decimal fraction. It is not hard to show that

the decimal fraction representing a rational number is repeating,
i.e.it contains a finite sequence of decimal signs which beginsto re-
peat again and again starting from some decimal place and going all

the way to the right. Conversely,every repeating decimal fraction,

as it is not hard to see,represents a rational number. Therefore the
decimal fraction representingan irrational number (e.g. the length
of any segment incommensurablewith the unit) is non-repeating.
For example, the decimalfraction

x/\177= 1.4142...

is non-repeating, since the number x/\177, as it is well known, is irra-
tional.

(3) Rational and irrational numbers are called real numbers.
Thus, infinite decimal fractions, repeating and non-repeating, repre-
sent (positive)realnumbers.

153. The number line. The correspondencebetweensegments
and real numbers expressing their lengths allows one to represent
real numbers as points on a straight line. Considera ray OJ (Figure
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165)and markonit a pointB such that the segment OB is congru-
ent to the unit of length. Every point C on the ray determines the

segment OC whose length with respectto the.unit OB is expressed

by a positive real numberc. One says that the point C represents
the numberc onthe number line. Conversely, given a positive real
number, say v/\177, its finite decimal approximations 1.4, 1.41, 1.414,
etc. are lengths of certain segments OD1, OD2, ODs, etc. com-
mensurable with the unit. The infinite sequence of such segments
approximatesfrom below a certain segment OD. One says that the
number (v\177 in this example) is represented by the point D on the

number line.

In particular, the point B representsthe number 1, and the point
O the number 0.

Now we extend the ray OA to the wholestraight line. Then

the point C' on the ray OA\177(Figure 165), symmetric with respect
to the center O to a pointC onthe ray OA, is said to represent
the negative real number -c, i.e. the opposite to that positive
number which is representedby the symmetric point C.

Thus, all real numbers: positive,zero, or 'negative, are repre-
sented by points on the number line. conversely, picking on any
straight line any two pSints O and B to represent the numbers0 and
1 respectively, we establish a correspondence between all points of
the lineand all real numbers.

AJ

c' o B D c

-c 0 _ 1 V\177' c

A

Figure 165

154. Ratio of two segments. Theratio ofoneline segment

to another is defined as the positivereal number which expresses

the length of the first segment when the second one is taken for the

unit of length. For example, if two segments a and c are such that

a = 2. lc, i.e. if the segmenta, measured by the unit c, has the length
2.1,then 2.1isthe ratio of a to c.

If both segments a and c are measured by the same unit b, then
the ratio ofa toc can be obtained by dividing the number expressing
the length of a by the number expressing the lengthofc. Forinstance,

if the lengths of a and c turned out to be7/2 and 5/3, we can write:

a \177b and c \177b. Taking then c for the unit, we find that b = 3= = , \177C,
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and respectively

2 \177 c = x c= \337 c.

Therefore the ratio of a to c, i.e. the length of the segment a measured
by the unit c, is equal to .the quotient \177: \177- 2-\177 -- Zfi = 2.1.

. a DueThe ratio of two segments is usually denoted as a c or
to the property of the ratio described above, the letters a and c in

these formulas can also be understoodas numbers measuring the

corresponding segments by the same unit b.
155.Proportions. A proportion expresses equality of two ra-

tios. For instance,if it isknown that the ratio a: b of two segments
is equalto the ratio a \177: b \177of two other segments, then this fact can
be expressedas a proportion:a' b = a \177\337b \177,or

b b \177'

In this case we will also say that the two pairs of segments: a and b,
and a \177and b \177,are proportional to each other.

When such pairsof segmentsareproportional,i.e.a ' b = a \177' b \177,

then a' a \177= b' b\177,i.e. the pairs a and a \177,and bandb \177(obtained

from the original ones by transposing the mean terms b and a \177)are

proportional too.

Indeed, replacing the four segments with numbersthat express
their lengths measured with the same unit, we seethat eachofthe
resulting numerical proportions:

a a \177 a b

\177 = bW and a \177 b \177

expresses the same equality between products of the numbers:

a x b \177: a \177x b.

EXERCISES

329. If the full angle is taken for the unit of angular measure,find

the measures of the angles containing 1\370, 1', 1\".

330. Prove that if a: b = a' : b', then (a + a') : (b + b') = a: b.
331. Provethat ifa: a' = b: b \177= c: c', then (a+b): c = (a'+b'):c'.
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332. Prove that if one sideof a triangle is a common measure of the
other two sidesthen the triangleisisosceles.
333.Prove that the perimeter and midline of a trapezoidcircum-
scribedabout a circle are commensurable.

33J. Prove that the perimeterof an inscribed equilateral hexagon
and the diameter of its circumscribedcircleare commensurable.

335. In a triangle, find the greatest commonmeasureof two seg-

ments: one between the orthocenter and barycenter,the other be-

tween the orthocenter and circumcenter.

336. Provethat the greatest common measure of two segments con-
tains every their common measure a whole number of times.
Hint: All remainders in the Euclidean algorithm do.

337. Supposethat two given arcs on a given circle have the greatest
commonmeasure \177. Show how to construct the arc \177 using only a

compass. Consider the examplewhereoneofthe given arcs contains

19 \370, and the other 360 \370.

338. Find the greatest common measure of two segments:

(a) one 1001 units long, the other 1105units long;

(b) one 11,111, the other 1,111,111units long.'

339. Prove that the numbers V\177, v\177, v/\177 are irrational.

3J 0. Compute V\177 with the precision of up to 0.0001.
$j!. Write 1/3, 1/5, 1/7, 1/17 as (finite or infinite)decimalfractions.
3J2.*Prove that a rational number ra/n is represented by.a finite

or repeating decimal fraction. Conversely, prove that a finite or re-

peating decimal fraction represents a rationalnumber.
3J3. An acute angle of a parallelogram contains 60\370, and its obtuse

angle is divided by the diagonalin the proportion 3: 1. Find the
ratio of thesidesof the parallelogram.

3JJ.* Prove that the base of an isoscelestriangle, whose angle at the
vertex contains 36\370, is incommensurable to the lateral side.
Hint: Draw the bisector from a vertex at the base, and compute
angles of the two triangles thus formed.

2 Similarity of triangles

156.Preliminaryremarks.In everyday life, we often en-
counter figureswhich have different sizes, but the same shape. Such
figuresare usually called similar. Thus, the same photographic pic-
tare printedin different sizes, or schemes of a building, or maps
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of a town, produced in different scales, provide examples of similar
figures. Our conceptof length of segments allows us to define pre-
ciselythe conceptofgeometric similarity of figures and to describe
ways of changing sizes of figures while preserving their shapes.Such

changes of the size of a figure without changingits shape are called

similarity transformations.

We begin our study of similar figures with the simplest case,
namely similartriangles.

157.Homologoussides.We will need to consider triangles or
polygonssuchthat anglesofoneofthem are respectively congruent to
the angles of another. Letus agreetocallhomologousthose sides of

such triangles or polygons whichare adjacentto the congruent angles

(in triangles, such sides are alsooppositeto the congruent angles).

158. Definition. Two triangles are called similar, if: (1)the
angles of one are respectively congruent to the anglesof the other,
and (2) the sides of one are proportional to the homologoussidesof
the 'other. Existence of such triangles is established by the following
lemma. 2

159. Lemma. ,4 line (D\177, Figure 166), parallel to any side
(AC) of a given triangle (ABC), cuts off a triangle (DBE),
similar to the given one.

Ina triangle ABC, let the line DE be parallel to thesideAC. It

is required to prove that the trianglesDBE and ABC are similar.

We will have to provethat (1)their angles are respectively congruent,
and (2) their homologoussidesare proportional.

(1) The angles of these triangles are respectivelycongruent,be-
cause ZB is their common angle, and ZD = ZA and ZE = \177C

as corresponding angles between parallel lines (DE and AC), and a

transversal (AB or CB respectively).
(2) Letus now prove that the sides of ADBE are proportional

to the homologous sides of AABC, i,e., that

BD BE DE
BA BC AC '

For this, consider the following two cases.

(i) The sides AB and DB have a common measure. Divide the
side AB into parts congruent to this common measure. Then DB
will be divided intoa whole number of such parts. Let the number of

--2An auxiliary theorem introduced in order to facilitatethe proof of another
theorem which follows it is called a lemma.
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such parts be minDBand n in AB. From the divisionpoints, draw

the set of lines parallel to AC, and another set of lines parallel to

BC. Then BE and BC will be divided into congruent parts (\36593),

namely ra in BE and n in BC. Likewise,DE will be divided into ra
congruent parts, and AC into n congruent parts, and moreover the

parts of DE will be congruent to the parts of AC (as oppositesides
ofparallelograms). It becomes obvious now that

BD ra BE ra DE m

BA n' BC n' AC n

ThusBD ' BA = BE \337BC -- DE ' AC.

/x, xNX.Xx.x,N\\IN x, 'x 'Nx ..N. x, x, N\\

Figure 166 Figure 167

(ii) The sides AB and DB do not have a common measure (Fig-
ure 167). Approximate the values of each of the ratios BD: BA
and BE: BC with the precision of up to 1/n. For this, divide the

side AB into n congruent parts, and through the division points,

draw the set of lines parallelto AC. Then the side BC will also be
divided into n congruent parts. Suppose that the \177th part of AB

is contained m times in DB with a remainder smaller than

Then, as it is seenfrom Figure 167, the \177th part of BC is contained
in BE also m timeswith a remainder smaller than \177BC.Similarly,
drawing the setof lines parallel to BC, we find that the \177th part of

AC is contained-in DE also ra timeswith a remainder smaller than

one such part. Therefore,with the precision of up to nl-th, we have

BD m BE ra DE m
BA n' BC n' AC n

wherewe usethe symbol \"\177\" to express the approximate equality of
numbers, which holdstrue within a required precision.
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Taking first n = 10, then 100, then 1000,and so on, we find

that the approximate values of the ratios computedwith the same

but arbitrary decimal precision, are equalto each other. Therefore

the values of these ratios are expressedby the same infinite decimal
fraction, and hence BD : BA = BE: BC = \177DE : AC.

160. Remarks. (1) The proven equalitiescanbe written as the

following three proportions:

BD BE BE DE DE BD
BA 'BC' BC AC AC BA

Transposing the meanterms we obtain:

BD BA BE BC DE AC
BE BC' DE AC.' BD BA'

Thus, if the sides of two triangles areproportional,then the ratio of

any two sides of one triangleis equal to the ratio of the homologous
sides of the other.

(2) Similarity of figures is sometimes indicated by the sign \177.

161. Three similarity tests for triangles.
Theorems. If in two triangles,

(1) two angles of one triangle are respectivelycongruent
to two angles of the other, or

(2) two sides of onetriangleareproportional to two sides

of the other, and the angles between these sides are congru-
ent, or

(3) if three sidesofonetriangle are proportional to three
sides of the other,
then suchtrianglesaresimilar.

(1) Let ABC and A\177B'C' (Figure 168)be two triangles such that

ZA = ZA', ZB - ZB', and therefore ZC = ZC: It is required to
prove that these triangles are similar.

Mark on AB the segmentBD congruent to A'B', and draw

DE AC. Then we obtain auxiliary ADBE, which according to
the Iemma, is similarto AABC. On the other hand, ADBE is
congruent to AA'B'C' by the ASA-test, because BD = A'B' (by
construction),ZB - ZB' (by hypotheses), and ZD = /A' (since
ZD = ZA and ZA -- ZA'). Clearly, if one of two congruent triangles

is--similar to another one, then the secondoneis alsosimilar to it.

Therefore AWB'C' \177 AABC.
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(2) Let ABC and A(B\177C \177(Figure 169) be two triangles such that
ZB = ZB\177,and A\177B \177' AB = B\177C \177' BC. It is required to prove that
thesetriangles are similar.

As before, mark on AB the segmentBD congruent to A\177B \177,and

draw DE[[AC. Then we obtain auxiliary ADBE similarto AABC.

Let us prove that it is congruent to AA\177B\177C( From the similar-

ity of ADBE and AABC, it follows that DB : AB = BE: BC.
Comparing this proportionwith the given one, we note that the first

ratios of both proportions coincide (since DB = A\177B\177), and hence

the remaining ratios of these proportionsare equal too. We see

that B\177C \177: BC = BE: BC, i.e. that the segmentB\177C \177and BE

have equal length when measured by the same unit BC, and hence
B\177C \177= BE. We conclude now that the trianglesDBE and

are congruent by the SAS-test, because they have congruent angles

/_B and ZB \177between respectively congruent sides. But ADBE is
similarto AABC,and therefore AA\177B\177C\177is also similar to. AABC.

B B

A' C' A' C'

A C A C

Figure 168 Figure 169

(3) Let ABC and A'B'C' (Figure 1-69)be two triangles such that
A\177B \177: AB = B\177C \177: BC = A\177C \177: AC. It is required to prove that
thesetriangles are similar.

Repeating the same construction as before, let us show that

ADBE and AA\177B\177C \177are congruent. From the similarity of the tri-
anglesDBE and ABC, it follows that DB : AB = BE: BC= DE:
AC. Comparing this series of ratios with the given one, we notice

that the first ratios in both seriesarethe same, and therefore all other

ratios are also equalto each other. From

we conclude that B\177C \177= BE, and from A\177C \177: AC = DE: AC that
A\177C \177= DE. We see now that the trianglesDBE and A\177B\177C \177are

congruent by the SSS-test, and since the first one of them is similar
to AABC, then the secondoneisalsosimilar to AABC.

162. Remarks (1) We would liketo emphasize that the method

applied in the proofs of the previousthree theorems is the same.

Namely,' marking on a sideof the greater triangle the segment con-
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gruent to the homologous side of the smaller triangle,and drawing

the line parallel to another side, we form an auxiliary triangle similar
to the greater givenone. Then we apply the corresponding congru-
ence test for triangles and derive from the hypotheses of \177he theorem

and the similarity property that the auxiliary triangleis congruent

to the smaller given one. Finally the conclusionabout similarity of

the given triangles is made.
(2) The three similarity tests are sometimes called the AAA-

test, the SAS:test, and SSS-test respectively.

163. Similarity tests for right triangles. Since every two

right angles are congruent, the following theorems follow directly

from the AAA-test and SAS-testof similarity for general triangles

and thus do not requireseparateproofs:
Ifin two'right triangles,

(1) an acute angle of one is congruent to an acute angle of the
other, or

(2) legs of one are proportional to the legsof the other,
then such right triangles are similar.

The following test doesrequirea separate proof.

Theorem. If the hypotenuse and a leg of onerighttriangle
are proportional to the hypotenuse and a leg of another one,
thensuchtriangles are similar.

Let ABC and A'B'C' be two triangles (Figure 170) such that
the angles B and B' are right, and A\177B \177\337AB = A\177C \177' AC. It is
required to prove that thesetriangles are similar.

c

A D B
A' D' C'

A D C

Figure 170 Figure 171

We apply the methodusedbefore.On the segment AB, mark

BD = A'B \177and draw DE[]AC. Then we obtain the auxiliary tri-
angle ADBE similar to AABC. Let us prove that it is congru-
ent to AA'B'C'. From the similarity of the triangles DBE and
ABC, it follows that DB : AB = DE : AC. Comparingwith

the given proportion, we find that the first ratios in both propor-
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tions are the same, .and therefore the second ratios are equaltoo,
i.e.DE: AC - A\177C \177: AC, which shows that DE = A\177C( We see

now that in the right triangles DBE and A\177B\177C\177, the hypotenuses

and one of the legs are respectivelycongruent. Thus the triangles

are congruent, and since one of them is similar to/kABC, then the
other one is alsosimilarto it.

164.Theorem. In similar triangles\177 homologous sides are
proportional to homologousaltitudes,,i.e. to those altitudes

which are dropped to the homologoussides.
Indeed,if triangles ABC and A\177B\177C\177 (Figure 171) are similar,

then the right triangles BAD and B\177WD \177are also similar (since

ZA -- ZAO,and therefore

BD AB BC AC

B\177D \177 A\177B \177 B\177C \177 A\177C \177'.

EXERCISES

Prove theorems:

3\177,5. A]t equilateral triangles are similar.

$\177{6. All isosceles right triangles are similar.
$\177{7. Two isosceles triangles are similar if and only if their angles at
the vertexare congruent.

$\177{8. In similar triangles, homologous sides are proportionalto:
(a) homologous medians (i.e. thos\177 medians which bisect homol-
ogous sides), and (b) homologousbisectors(i.e.the bisectors of

respectively congruent angles).

$J9. Every segmentparalleltothebaseofa triangle and connecting

the other two sides is bisectedby the median drawn from the vertex.
350. The line drawn through the midpoints of the bases of a trape-
zoid,passesthrough the intersection point of the other two sides,
and through the intersection point of the diagonals.
351. A right triangle is divided by the altitude drawn to the hy-

potenuse into two triangles similarto it.
$52.If a line divides a triangle into two similar trianglesthen these
similar triangles are right.

$55. Given three lines passingthrough the same point. If a point
movesalongoneofthelines,then the ratio of the distances from this
point to the other two lines remains fixed.
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$5\1774. The line connecting the feet of two altitudes of any triangle

cuts off a triangle similar to it. Derivefromthis that altitudesof
any triangle are angle bisectors in'another triangle, whose vertices
arethe feet of these altitudes.

355.* If a median of a trianglecuts off a triangle similar to it, then
the ratio of the homologoussidesofthesetriangles is irrational.

Hint: Find this ratio.

Computation problems
356.Ina trapezoid, the line parallel to the bases and passingthrough

the intersection point of the diagonals is drawn. Computethe length

of this line inside the trapezoid, if the basesare a units and b units
long.
357. In a triangle ABC with sides a, b, and c units long,a line MN

parallel to the side AC is drawn, cuttingon the othertwo sides the

segments AM = BN.- Find the length of MN.

358. Into a right triangle with .legsa and b units long, a square is
inscribed in sucha way that one of its angles is the rightangleofthe
triangle, and the vertices of th\177 square lie on the sides of the triangle.
Find the perimeterof the square.

359. Two circles of radii R and r respectively are tangent externally

at a point M. Computethe distancefrom M to the common external
tangents of the circles.

3 Similarity of polygons
165. Definition. Two polygons with the same number of sides

arecalledsimilar,if angles of one of them are respectively congru-
ent to the angles of the other, and the homologous sides of these
polygons are proportional. Thus, the polygon ABODE is similarto
the polygon A'B'C\177D'E \177(Figure 172), if

ZA = ZA \177, ZB =

and

ZC = ZC \177, LD= LD \177, LE= LE \177

Existence of such polygons is seen from the solution of the following
problem.

!66. Problem. Given a polygon ABODE, 'and a segment a,
cOhstructanotherpolygon similar to the given one and such that its

side homologous to the side AB is congruent to a (Figure 173).

AB BC CD DE EA

A\177B \177 B\177C \177 C\177D \177 D\177E \177 E\177A \177'
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Here is a simpleway-to do this. On the side AB, mark AB' - a (if

a > AB, then the point B' 'lieson the extension of A\177). Then draw
all diagonals from the vertex A, and construct B'C\177]IBC,C'D\177IICD

and D\177E\177IIDE. Then we obtain the polygon AB\177C'D\177E \177similar to

the polygon ABCDE.

C

C'
B D

D'

B'

A E A' E'

C

B C'

A E' E

D

Figure 172 Figure 173

Indeed, firsfly, the angles of one of them arecongruent to the an-

gles of the other: the angleA is common; ZB \177= ZB and ZE' = ZE
as correspondingangles between parallel lines and a transversal;
ZC \177= ZC and ZD \177= ZD, since these angles consist ofparts respec-
tively congruent to each other. Secondly, from similarity of \177riangles,

we have the following proportions:

from AAB'C' ,.\177AABC:

from AAC'D' \177 AACD:

from AAD'E \177\177-'ZkADE:

AB' B'C' AC'

A\177= B\177-'AC;

AC' C'D' AD'
A\177- = C\177 - AD ;
AD' D'E' AE'
AD DE

Since the third ratio of the first row coincides with the first ratio of
the secondrow, and the third ratio of the second row coincideswith

the first ratio of the third row, we concludethat all nine ratios are

equal to each other. Discarding thoseoftheratioswhich involve the

diagonals, we can write:

AB' B'C' C'D' D'E' AE'

'AB - BC CD DE AE

We see therefore that in the polygons ABCDE and AB'C'D'E',
which have the same number of vertices, the anglesare respectively
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congruent, and the homologoussidesare proportional. Thus these
polygons are similar.

16]'. Remark.Fortriangles, as we have seen in \365161, congruence

of their angles implies proportionaliCy of their sides,and conversely,

proportionaliCy of the sides implies congruence of the angles. As a

result, congruence of angles alone, or proportionaliCy of sides alone

is a sufficient test of similarity of triangles. For polygons however,
congruence of angles alone,or proportionaliCy of sides alone is in-

sufficient to claimsimilarity.Forexample, a square and a rectangle
have congruent angles,but non-proportional sides, and a square and
a rhombushave proportional sides, but non-congruent angles.

168. Theorem. Similar polygonscan bepartitionedinto
an equal number of respectively similar triangles positioned
in the same way.

For instance, similar polygons ABODE and AB'C'D'E \177(Figure'

173) are divided by the diagonals into similartriangles which are'

positioned in the same way. Obviously,this methodappliesto every

convex polygon. Let us point out another way which also works for
convex polygons. ,

Insidethe polygon ABODE (Figure 172), take any point O and
connectit to all the vertices. Then the polygon ABODE will be
partitionedinto as many'triangles as it has sides. Pick one of them,
say, AAOE (it is shaded on the Figure 172),and on the homolo-

gous side A'E \177of the other polygon, construct the angles OtA\177t\177'

and O'E'A \177respectively congruent to the angles OAE and OEA.
Connectthe intersection point O \177with the remaining vertices of the
polygon A'B'C'D'E( Thenthis polygon will be partitioned into the
same number of triangles.Let us prove that the triangles of the first
polygon are respectivelysimilarto the triangles of the second one.

Indeed, ZkAOEis similartoAA'O'E\177by construction. To prove
similarity of the adjacenttrianglesAOB and A'O'B\177,we take into
account that similarity of the polygons impliesthat

BA AE
/BAE = z\177B'A'E \177, and \177 -

B'A' A\177E\"

and similarity of the triangles AOE and A'O\177E \177implies that

AO AE
XOAE =/O'A\177E\177, and \177 -

A'O' ' A'E\"
It follows that

XBAO = ZB'A'O', and
BA AO

B\177A \177 A\177O\177'
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We see that the triangles AOB and A\177O\177B \177have congruent angles

contained between two proportional sides,and are therefore similar.

In exactly the same way, we then prove similarity of/XBOC and

AB'O'C \177,then of ACOD and AC'O'D \177,etc. Obviously, the similar

triangles are .positionedin their respectivepolygons in the same way.

In order to prove the theoremfor non-convex polygons, it suffices

to partition them in the sameway into convex ones, by the method
explained in \36582 (see Remark (2)).

169. Theorem. Perimeters of. similar polygonsare pro-
portionalto homologous sides.

Indeed, if polygons ABCDE and A\177B\177C\177D\177E \177(Figure 172) are

similar, then by definition

AB BC CD DE EA

A\177B \177 B\177G \177 C\177D \177 D\177E \177 E\177A \177

where k is some real number. This means that AB = k(A\177B\177),

BC = k(B\177C\177), etc.. Adding up, we find

AB + BC +CD+DE + EA = k(A\177B \177+ B\177C \177+ C\177D \177+ D\177E \177+ E\177A\177),

and hence

AB + BC + CD + DE+ EA

A'B \177+ B'C \177+ C'D \177+ D'E \177+ E'A \177

=k.

Remark. This is a general property of proportions:given a row

of equal ratios, the sum of the first terms of the ratios are to the sum
ofthe secondterms, as each of the first terms is to the corresponding
secondterm.

EXERCISES

360. Prove that all squares are similar.
361.Prove that two rectangles are similar if and only if they have

equal ratios of non-parallel sides.
362. Prove that two rhombi are similar if and only if they have
congruentangles.
363.How does the previous result change if the rhombiare replaced

by arbitrary equilateral polygons?

36\177. Prove that two kites are similar if and only if the angles of one
of them 'arerespectivelycongruent to the angles of the other.
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365. Prove that two inscribed quadrilaterals with perpendiculardi-
agonals are similar if and only if they have respectivelycongruent

angles.

366.* How does the previous result change,if the diagonals of the
inscribed quadrilaterals form congruent angles, other than d?

367. Prove that two circumscribed quadrilaterals are similar if and
only if the anglesof oneof them are respectively congruent to the
angles of the other.
368. How does the previous result change if quadrilaterals are re-
placedby arbitrary polygons?

369. Two quadrilaterals are cut into two congruent equilateral tri-

angles each. Prove that the quadrilateralsare similar.

370. How does the previous result changeif the equilateraltriangles

are replaced With right isosceles triangles?

4 Proportionality theorems

170.Thales'theorem.The following result was known to the
Greek philosopherThalesofMiletus (624 B.C. - 547 B.C.)

Theorem. The sides of an angle(ABC, Figure 174) inter-

sected by a series of parallel lines (DD',EE\177,FF \177,...) are

divided by them into proportional parts.

D

F

E

C

__N

B D' E' F' A

Figure 174

M /

o

B' C'

\177 N

Figure 175

It is required to prove that

BD DE
\177D \177 D\177E

EF
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or, equivalently, that

B D BD' DE D'E'
DE D'E\" EF E'F\"

Draw the auxiliary lines DM, EN, ...,parallel to BA. We obtain

the triangles BDD', DEM, EFN, ...,which are all similar to each
other,' since their anglesare respectively congruent (due to the prop-
erty of paxallellinesintersectedby a transversal). It follows from the
similarity that

BD DE EF
BD' DM EN

Replacing in this sequence of equal ratios the segments:DM with

D'E \177,EN with E'F \177,..., (congruent to them as opposite sides of
parallelograms),we obtain what was required to prove.

171. Theorem. Two parallel lines (MAr and M'N', Figure

175) intersected by a series of lines(OA, OB, OC, ...), drawn
from the same point (O), are dividedby these lines into pro-
portional parts.

It is requiredto prove that the segments AB, BC, CD, ... of
the line MN are proportional to the segments A'B \177,B\177C \177,C'D', ...

of the line M\177N(

From the similarity of triangles (\365159)' OAB ,.\177 OA'B \177and

OBC \177 OB\177C \177,we derive:

AB BO BO BC
A'B \177 B'O B'O B\177C\"

and conclude that AB ' A'B' = BC' \337B\177C: The proportionality of

the other segments is proved similarly.

172. Problem. To divide a line segmentAB (Figure 176) into

three parts in .the proportion m ' n ' p, .where. m, n, and p are given

segments or given whole numbers.

Issue a ray AC making an arbitrary angle with AB, and markon
it, staxting from the point A, the segments congruent to the given

segments m, n, and p. Connect the endpointF ofthe segment p with

B, and through the endpointsC and H of the marked segments, draw
the linesGDand HE parallel to FB. Then the segmentAB will be

divided by the points D and E in the proportion m \337n 'p.

When m, n, and p denotegiven whole numbers, e.g. 2, 5, 3, then
the constructionis performed similarly, except that the segments
marked on AC are to have lengths 2, 5, and 3 in the same arbitrary
units.
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The described construction applies, of course, to division of seg-

ments into any number of parts.

173. Problem. Given three segments a, b, and c, find a fourth
segment to form a proportion (Figure 177), i.e. find a segment x such
that a: b = c: x.

On the sides of an arbitrary angie ABC, mark the segments

BD = a, BF = b, DE - c. Connect D and F, and construct

EG]]DF. The required segment is

m a

n b

P c

A D

Figure 176

E B \177a c
\"D E A

C x\1777'\177\"\177 C '

Figure 177

174. A property of bisectors.
Theorem.Thebisector(BD, Figure 178) of any angle of a

triangle (ABC) divides the opposite side into parts (AD arid
DC) proportional to the adjacentsides.

It is required to prove that if ZABD = ZDBC, then

AD AB

DG BC'

Draw C'E parallel to BD up to the intersection at a point E with
the extensionof the side AB. Then, according to Thales' theorem
(\365170), we will have the proportion AD: DC = AB: BE. To derive

from this the required proportion, it sufficesto show that BE =.

i.e. that ACBE is isosceles.In this triangle,Z.E = ZABD and
ZBCE = \177DBC(respectively as correspondingand as alternate

angles formed by a transversal with parallellines).But \177ABD =

\177-DBC\177by the hypothesis, hence z\177E = \177BCE, and therefore
and BE are congruent as the sides opposite to congruent angles.
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. Example. Let AB=30, BC=24, andAC=36 cm. We can

denote AD by the letter x and write the proportion:

x 30 x 5
36-\177\177 2\177 \177 Le. 36-\177

We find therefore: 4x = 180- 5x,or9x- 180, i.e. x = 20. Thus
AD = 20 cm,and DC = 36- x =16 cm.

175. Theorem. The bisector (BD, Figure179)ofan exterior
angle (CBF) at t'he vertex of a triangle (ABC) intersects the

extension of the base (AC) at a point(D)suchthatthe 'dis-

tances (DA and DC) from this point to the endpointsof the
base are proportional to the lateral sides (AB and BC) of the
triangle.

A D C

F

A C D

\177Figure 178 Figure 179

In other words, it is requiredto prove that if ZCBD = ZFBD,
then

DA AB
DC BC'

Drawing CE[[BD, we can write the proportion: DA: DC =
BA :BE. Since ZBEC = ZFBD and ZBCE = ZCBD(respec-
tively as corresponding and as alternate angles formed by parallel

lines with a transversal), and /FBD = /CBD by the hypothe-

sis, we have ZBEC = ZBCE. Therefore/kEBCisisosceles,i.e.
BE = BC. Replacing, in the proportion we already have, the seg-
ment BC with the congruent segment BE, we obtain the required

proportion: DA : DC = BA : BC.
Remark. Thebisectorof the exterior angle at the vertex of an

isoscelestriangleis parallel to the base. This is an exceptional case
in the formule\177tion of the theorem and in its proof.
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EXERCISES

371. Prove that if proportional segments are marked on the sides
of an anglestarting fromthe vertex, then the lines connecting their
endpoints are parallel.
372. Construct a line segment connecting lateral sides of a given
trapezoidand parallelto its bases,such that it is divided by the
diagonals into threecongruent parts.

373. Construct a triangle, given the angleat the vertex, the base,

and its ratio to one of the lateralsides.
374{. Prove that the bisector of the angle betweentwo non-congruent

sides of a triangle is smaller than the median drawn from the same
vertex.

375. In a trianglewith sides 12, 15, and 18 cra, a circleis drawn

tangent to both smaller sides and with the centerlying on the greatest

side. Find the segments into which the center divides the greatest
side.

376. Througha given point 9n the bisector of a given angle, draw a
linewhose part inside the angle is divided.by the point in the given

proportion m: n.

377. Construct a triangle,given the angle at the vertex, the base,
and the pointon the basewhere it meets the angle bisector.

378. Into a given circle, inscribe a triangle, given its base and the
ratioof the other two sides.

379.* Construct a triangle, given two of its sides and the bisector of
the anglebetweenthem.\"

Hint: Examine Figure 178, and construct/kCBE first.
380.*In AABC, the side AC = 6 cm, BC = 4 cm,and ZB = 2ZA.
Compute AB.
Hint: SeeExamplein \365174.

381. Given two points A_ and B on an infinite line, find a third point
C onthisline,such that CA: CB = ra: n, where m and n aregiven

segments or given numbers. (If m \177 n there are two such points:
onebetweenA and B, the other outside the segment AB.)
382.*Given two points A and B, find the geometric locusof points
M such that MA and MB have a given ratio m: n.
Hint: The answer is often called Apollonius' circle after the Greek
geometerApollonius of Perga (262 - 190 B.C.)
383.*Intoa given circle, inscribe a triangle, given its base, and the
ratioofthe median, bisecting the base, to one of the lateralsides.
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5 Homothety

176; Homothetic figures. Supposewe are given (see Figure

180): a figure \177, a point S, which we will cs]] the center of homo-
thety,snda positive number k, which we will cs]l the similarity
coefficient (orhomothetycoefficient).Take an arbitrary point A
in the figure \337 and draw through it the ray SA drawn from the center

S. Find on this ray the pointA' such that the rstio SA \177: SA is equsl

to k. Thus, if K < 1, e.g. /\177- 1/2, then the point A \177lies between S

and A (as in Figure 180), and if k > 1,e.g.k - 3/2, then the point
A \177lies beyond the segment $A. Take snother point B ofthe figure

\177, and repest the same construction as we explsinedfor A, i.e. on

the ray SB, find the point B \177such thst SB \177: SB - k. Imagine now

that, keeping the point $ and the numberk unchanged, we find for

every point of the figure \337 the corresponding new point obtained by
the sameconstruction.Then the geometric locus of al] such points is
a new figure \177. The resulting figure \177' is called homothetic to the
figure'\177 with respect to the center S and with the given coefficient k.
The transformation of the figure \337 into \177 is ca]led a homothety,

or similarity transformation, with the center$ and coefficient k.

A

Figure 180 Figure 181

1]'7. Theorem. A j\177gure homothetic to a line segment (AB,
Figure181)is a linesegment(A\177B'), parallel to the first one
and 'such that the ratio of thissegment to the j\177rst one is

equal to the homothety coeJ\177cient.
Find points A \177and B ' homothetic to the endpoints A and B of

the first segment with respect to the given center S and with the
given homothety coefficientk. ThepointsA \177and B' lie on the r\177ys

SA and SB respectively, snd $\177.\177: SA = k = $B \177: SB. Connect

A \177with B \177and prove that A\177B\177I[AB, and A\177B \177: AB = k. Indeed,
AA\177SB\177.-\177 AASB since they have the common angle S, and their
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sides containing this angle are proportional.Fromthe similarity of

these triangles, it follows that A'B': AB - SA\177: $A - k, and that
ZBAS =/B'A'S, and hence that A\177B\177IIAB.

Let us prove now that the segment A\177B \177is the figure homothetic

to AB. For this, pickany point M on AB and draw the ray SM. Let

M \177be the point where this ray intersects the lineA\177B( The triangles

M\177A\177S and MAS are similar because the angles of oneof themare

congruent to the angles-of the other. Therefore SA\177.: SM = SA \177:

SA = k, i.e. M \177is the point homothetic to M with respectto the

center S and with the coefficient k. Thus, for any point on AB, the
point homothetic to it lieson A\177B( Vice versa, picking any point
M \177on A\177B \177and intersecting the ray SM \177with AB, we similarly find
that M \177is homothetic to M. Thus the segment A\177B \177is the figure
homothetic to AB.

Remark. Notethat the segmentA\177B \177with the endpoints respec-

tively homothetic to the endpointsof the segmentAB, isnotonly

parallel to AB, but also has the samedirection(indicated in Figure

181 by arrows).

A C

$

Figure 182 Figure 183

17'8. Theorem. The figurehomothetictoa polygon (ABCD,

Figure 182) is a polygon (A\177BtC\177D\177) similar to the first one,
and such that its sidesareparallelto the homologous sides

of the first polygon, and the ratio'of thehomologoussides
is equal to the homothety coejeficient (k).

Indeed, accordingto the previous theorem, the figure homothetic
to a polygon ABCD is formed by the segments parallel to its sides,
directedthe same way, and proportional to them with the propor-
tionality coefficient k. Therefore the figure is a polygon A\177B\177C\177D \177,

whose angles are respectively congruent to the anglesof ABCD(as
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angles with parallel respective sides, \36579), and whose homologous

sides are proportional to the sidesofABCD.Thus these polygons

are similar.

Remark. One can define similarity of arbitrary geometric figures

as follows: two figuresare calledsimilarifoneofthem is congruent

to a figure homothetic to the other. Thus,hom\177)thetic figures are

similar in this sense. The theoremshows that our earlier definition

of similar polygons (\365165) agrees with the general definition of similar
figures.

179.Theorem. The j\177gure horaothetic to a circle (centered
at O, Figure 183), is a circle such that the ratio of its radius
to the'radiusof the first circle is equal to the horaothety
coeJ\177cient, and \177ohose center (\270') is the point homothetic to
the center of the first circle.

Let $ be the center of homothety, and k the coefficient.Pick an

arbitrary radius OA of the given circle and constructthe segment

\270'A' homothetic to it. Then \270\177A\177: OA = k by the result of \365177,

i.e. \270\177A\177= k OA. When the radius \270A rotates about the center

O, the length of the segmentsO\177A \177remains therefore constant, and
the point O\177homothetic to the fixed point O, remains fixed. Thus

the point A ' describes the circle with the center\270\177and the radius

congruent to k times the radiusof the given circle.

A

Figure 184

180. Negative homothety coefficients. Supposewe are given

a figure \177, a point \177q, and a positive number /;. We can alter the
construction of the figure homothetic to \337 in the following fashion.

Pick a point A (Figure 184) of the figure (I>, issue from S'the ray
$A, and extend it beyond the pointS. On the extension of this ray,
mark the point A' such that $A': $A - k. When this construction

is repeated (keeping $ and k the same)for all points A of the figure
\337, the locus of the corresponding points A' is a new figure \177: The

figure \177'- is also considered homothetic to the figure \337 with respect
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to the center$, but with the negative homothety coefficient equal
to -k.

We suggest that the reader verifies the following facts about ho-
motherieswith negative coefficients:

(1) The figure homothetic with a negative coefficient -k to a line
segmentAB (Figure 184) is a line segment A'B' parallel to AB,
congruent to k AB, and having the direction oppositeto the direction

(2) The similarity transformation with the center S and coefficient
-1 is the same as the central symmetry about the center $.
(3) Two figures, homothetic to a given figure about a center $ and

with coej\177ficients k and -k respectively, are centrally symmetric to

each other about the center $.
(4) On the number line (\365163), the points representing the numbers k
and -k are homotheticto the point representing the number I with

respect to the \177enter O, and with the homothety coej\177ficients equal to

k and-k respectively.

181. The method of l\177omothety. This method can be suc-
cessfully applied to solving many construction problems. The idea
is to constructfirst a figure similar to the required one, and then to
obtainthe required figure by means of a similarity transformation.
The homothety method is particularly convenient when only one of
the given quantities is a length, and all others are anglesor ratios,
such as in the problems: to construct a triangle,given its angle, side,

and the ratio of the other two sides, or given two angles and a cer-
rain segment(an altitude, median, angle bisector, etc.); to construct
a square,given the sum or the'difference of its side and the diagonal.
Let us solve, for example, the following problem.

Problem 1. To construct a triangle ABC, given the angle C,
the ratio of its sides AC : BC, and the altitude h, dropped from the

vertez of this angle to the oppositeside (Figure185).
Let AC: BC = m: n, where ra and n are two given segments

or two given numbers. Construct the angle C, and on its sides,

mark the segments CA' and CB\177,proportional to m and n. When
ra and n are segments, we may take CA \177= m and CB \177= n. If m
and n are whole numbers, then picking an arbitrary segment l, we
may construct CA \177= ml and \177'B \177= nt. In both cases, we have
CA\177: CB \177= m: n.

The triangle A\177B'C is, evidently, similar to the required one.
To obtainthe required triangle, construct the altitude CD \177of the

triangle A'B'C and denote it h( Now pickan arbitrary homothety
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center and construct the trianglehomotheticto the triangle A'B\177C

with the homothety coefficient equal to h/h: The resulting triangle

will be the required one.
It is most convenient to pick the center at the point C. Then

the constructionbecomes especially simple (Figure 185). Extend
the altitude CD' ofthe triangleA\177B\177C, mark on it the segment CD
congruent to h, and draw through its endpoint D the line AB parallel
to A\177B: The triangle ABC is the required one.

The positionof the required figure in problems of this kind re-
mainsarbitrary. In some other problems, it is required to construct
a figure in a quite definite position with respect to given points and

lines. It can happen, that discardingoneoftheserequirements, we

obtain infinitely many solutions similar to the requiredfigure. Then

the method of homothety becomes useful. Hereare some examples.

c

A D B

'A

Figure 185 Figure 186

182. Problem 2. Into a given angle ABC, to inscribea circle

that would pass through a given point M (Figure186).
Discard temporarily the requirement for the circle to passthrough

the point M. The remaining condition is satisfied by infinitely many

circles whose centers lie on the bisectorBDofthe given angle. Con-

struct one such circle, e.g. the onewith the center at some point o.
Take on it the pointm homothetic with respect to the center B to
the point M, i.e. lying on the ray BM, and draw the radiusmo. If
we now construct MO]]rao, then the point O will be the center of

the required circle.

Indeed, draw the perpendicularsON and on to the side AB. We
obtain similartriangles:MBO,\177 mBo, and NBO ,\177 nBo. From

their similarity, we have: MO: mo= BO : Boand NO: no =
BO : Bo, and thereforeMO: too=NO :no. But too=no, and
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henceMO= NO, i.e. the circle described by the radius OM about
the centerO is tangent to the side AB. Since its center lies on the

bisector of the angle, it is tangent to the sideBCaswell.

If instead of the point m on the auxiliary circle, the other intersec-
tion point m\177of this circle with the ray BM is takenashomothetic to

M, then another center 0 \177of the required circle will be constructed.
Thus the problemadmits two solutions.

183. Problem 3. Into a giventriangleABC,to inscribe a thom-

bus with a given acute angle,in such a way that one of its sideslies
on the base AB of the triangle, and two vertices on the lateral sides
AC and BC (Figure187).

c

A N Z P U B

Figure 187

Discard temporarily the requirement for one of the vertices to lie
on the sideBC. Then there are infinitely many rhombi satisfying the
remainingconditions.Construct one of them. For this, take on the
sideAC an arbitrary point M and construct the angle,congruent to

the given one, with the vertex at the point M, and such that one of
its sides is parallelto the base AB and the other intersects the base
at some point N. On the side AB, mark a segmentNP congruent

to MN, and construct the rhombus with the sidesMN and NP.

Let Q be the fourth vertex of this rhombus.Taking A for the cen-
ter of homothety, constructthe rhombus homothetic to the thombus
MNPQ, and choose the homothety coefficient such that the vertex
of the new rhombuscorrespondingto the vertex Q turns out to lie
on the sideBCofthe triangle. For this, extend the ray AQ up to
its intersection with the side BC at some point X. This point will

be one of the vertices of the requiredrhombus.Drawing through X

the lines parallel to the sidesofthe rhombusMNP(\177, we obtain the

required rhombus XYZU.
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EXERCISES

Prove theorems:

$8,\177. If the radii of two circle\177 rotate remaining parallel to each other,
then the linespassingthrough the endpoints of such radii intersect
the lineof centersat a fixed point.

0\37085. Two circles on the plane are homotheticto each other with

respect to a suitable center (eventwo centers, for one the homothety
coefficient is negative,and for the other positive).

Hint: The centers of homothety are the fixed intersection points

from the previous problem.

Find the geometric locus of:
0O86. Midpoints of all chords passing through a given point on a
circle.
0O87. Points dividing all chords passing through a given point on a
circle in a fixed ratio ra :\177.

0O88. Points from which the distances to the sidesofa given angle

have a fixed ratio.

Construction problems

0O$9. Through a point given in the interior of an angle,draw a line

such that its segments between the point-andthe sidesofthe angle

have a given ratio ra: \177.

0O90. About a given square, circumscribe a trianglesimilarto.agiven

ORe.

0O91. Find a point inside a trianglesuch that the three perpendiculars
dropped from this point to the sidesofthe triangle are in the given
proportion \177: \177: p.

0O9\234. Construct a triangle, given the angle at the vertex,thealtitude,
and the ratio in which its foot divides the base.
0O90O. Construct a triangle, given its angles, and the sum or the dif-

ference of the base and the altitude.
0O9\177. Construct an isosceles triangle, given the angle at the vertex,
and the sum of the base with the altitude.
0O95. Construct a triangle, given its angles and the radiusof its cir-

cumscribed circle.

0O96. Given ZAOB and a point C in its interior. On the side OR,
find a point M equidistant from OA and C.
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$97. Construct a triangle, given the ratio ofits altitude to the base,

the angle at the vertex,and the mediandrawn to one of its lateral
sides

$95. Into a given disk segment, inscribe a square such that one of
its sideslieson the chord, and the opposite vertices on the arc.
$99. Intoa given triangle, inscribe a rectangle with the given ratio
of the sidesra: n, sothat one of its sides lies on the base of the
triangle,and the opposite vertices on the lateral sides.

6 Geometric mean

184.Definition.The geometric mean between two segments
a and c is defined to be a third segment b such that a: b = b: c.

More generally, the same definition applies to any quantities of the
same denomination. When a, b, and c are positive numbers, the
relationshipa: b = b: c can be rewritten as

b 2 = ac, or b = V\177-\177.

185. Theorem. In a right triangle:
(1) the altitudedroppedfrom the vertex of the right angle

is the geometricmean between two segments into which the
foot of the altitude dividesthe hypotenuse,and

(2) each leg is the geometric mean between the hypotenuse
and tl\177e segment of it which is adjacent to the leg.

Let AD (Figure 188) be the altitude dropped from the vertex of

the right angle A to the hypotenuse BC. It is required to prove the

following proportions:

(1) BD AD BC AB and BC AC
A'-\177 = D\177' (2) A'-\177 = BD A'--\177 = D---\177'

The first proportion is derived from similarity of the trianglesBDA

and ADO. These triangles are similar because

Z1 = ./._4 and Z2 = Z3

as angles with perpendicularrespectivesides(\36580). The sides BD

and AD of ABDA form the first ratio of the required proportion.
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The homologous sides of AADC are AD and DC, 3 and therefore
BD : AD = AD : DC.

The second proportion is derived from similarity of the triangles
ABC and BDA. Thesetrianglesare similar because both are right,
and ZB is their common acute angle. The sides BC and AB of
AABC form the first ratio of the required proportion. The homol-
ogoussidesofABDA are AB and BD, and therefore BC: AB =
AB : BD.

The last proportion is derived in the samemanner from the sim-

ilarity of the triangles ABC and ADC.
A

B D C B D C

Figure 188 Figure 189

186. Corollary. Let A (Figure 189) be any point on a circle, de-
scribed about a diameterBC. Connecting this point by chords with
the endpoints of the diameterwe obtain a right triangle such that
its hypotenuse is the diameter,and its legs are the chords. Applying
the theoremto this triangle we arrive at the following conclusion:

Theperpendiculardropped from any point of a circle to its diam-
eteris the geometric mean between the-segments into which the foot
of the perpendiculardivides the diameter, and the chord connecting
this point with an endpoint of the diameter is the geometricmean
between the diameter and the segment of it' adjacentto the chord.

187'. Problem. To construct the geometric mean between two

segments a and c.

We give two solutions.
(1) On a line (Figure 190), mark segments AB = a and BC = c

next to each other, and describe a semicircleon AC as the diameter.

3In order to avoid mistakes in determining which sides of similar triangles
are homologous to each other, it is convenient to mark angles opposite to the
sidesin question of one triangle, then find the angles congruent to them in the

other triangle, and then take the sides opposite to these angles.For instance, the
sides BD and AD of/k]\177DA are opposite to the angles I and 3; these angles are
congruent to the angles 4 and 2 of/kAD(;', which are opposite to the sides AD
and DO. Thus the sides AD and DC correspondto BD and AD respectively.
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From the point B, erect the perpendicular to AC up to the inter-
section point D with the semicircle. The perpendicular BD is the
requiredgeometricmean between \1774B and BC.

A
A

D

Figure 190 Figure 191

(2) From the endpoint A of a ray (Figure 191), mark the given
segmentsa and b. On the greater of them, describe a semicircle.
From the endpoint of the smaller one, erect the perpendicularup to
theintersection-point/3with the semicircle, and connect D with A.
The chord\1774D is the required geometric mean between a and b.

188.The PythagoreanTheorem.The previous theorems

allow one to obtain a remarkablerelationshipbetween the sides of any

right triangle. This relationshipwas proved by the Creek geometer
Pytha9oras of Samos (who lived from about 570 B.C.to about 475
B.C.) and is namedafter him.

Theorem. _\177f the sides of a right triangle are measured
with the same unit, then the square of the lengthof its hy-

potenuse is equal to the sum of the squaresof the lengths

of its legs.

A

Figure 192

Let ABC (Figure192)be a right triangle, and AD the altitude
--dropped to the hypotenuse from the vertex of the right angle. Sup-
posethat the sides and the segments of the hypotenusearemeasured
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by the same unit,
a, b, c, c\177and b( 4

proportions:

or equivalently:

and their lengths are expressed by the numbers
Applying-the theorem of \365185, we obtain the

a: c = c: c\177and a: b = b: b\177,

ac \177= c2 and ab\177\177- b 2.

Adding these equalities, we find:

ac\177+ ab \177= c2+b 2, or a(c\177+ b \177)= c 2 + b2.

But c/ + b \177= a, and therefore a2 = b 2 + c2.

This theorem is often stated in short: the square of the hypotenuse
equalsthe sum of the squaresof the legs.

Example. Suppose that the legs measured with somelinear'unit

are expressed by the numbers 3 and 4. Then the hypotenuse is

expressed in the same units by a number x such that

x 2=32+42=9+16=25, and hencex=x/\177=5.

Remaxk.The right triangle with the sides 3, 4, and 5 issometimes
called Egyptian because it was known to ancient Egyptians. It is
believed they were using this triangle to construct right angleson
the land surfacein the following way. A circular rope marked by 12

knots spaced equally would be stretched aroundthreepolesto form

a triangle with the sides of 3, 4, and_5 spacings. Thenthe angle

between the sides equal to 3 and 4 would turn out to be right. \177

Yet another formulation of the Pythagorean theorem, namely the
oneknown to Pythagoras himself, wiI1 be given in \365259.

189. Corollary. The squares of the legs have the same ratio as
the segments of the hypotenuseadjacentto them.

Indeed,from formulas in \365188 we find c2: b\177= ac \177: ab \177= c': b\177.

Remarks. (1) The three equalities

ac \177= c2, ab \177= b 2, a 2 = b2 + c 2,

4It is customary to denote sides of triangles by the lowercase letters corre-

sponding to the uppercase letters which label the opposite vertices.
SRight triangles whose sides are measured by whole numbers are called

Pythagorean. One can prove that the legs x and y, and the hypotenuse z
of such triangles are expressedby the formulas: x = 2ab,y = a 2 - b \177,z = a 2 + b \177,

where a and b are arbitrary whole numbers such that a > b.
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can be supplemented by two more:

b\177+c \177=a, and h 2=btc \177,

where h denotes the length of the altitude AD (Figure 192). The

third of the equaltries, as we have seen, is a consequence of the first

two and of the fourth, so that only four of the five equaltries are
independent. As a result,given two of the six numbers a, b,c, b \177,c'

and h, we can compute the remainingfour. Forexample, suppose we

are given the segmehts of the hypotenuse b \177= 5 and c\177= 7. Then

a=b'+c\177=12, c = x/\177c\177 = v/'i-\177 \3377 = \177 = 2V/\177,

(2) Later on we will often say: \"the square of a segment\" instead

of \"the square of the number expressingthe length of the segment,\"

or \"the product of segments\"instead of \"the product of numbers

expressing the lengths of the segments.\"We will assume therefore

that all segments have been'measured usingthe sameunit of length.

190. Theorem. In every triangle\177 the square of a side
opposite to an acuteangleis equal to the sum of the squares
of the two other sidesminustwice the product of (any) one
of these two sides and the segmentof thissidebetween the

vertex of the acute angle and the foot of the altitudedrawn

to this side.

Let BC be the sideof AABC (Figures 193 and 194), opposite
to the acute angleA, and BD the altitude dropped to another side,
e.g.AC, (or to its extension). It is required to prove that

BC 2 = AB 2 + AC \177- 2AC. AD,

or, using the notationof the segments by single lowercase letters as
shown on Figures193or194,that

a 2 = b\177+ c 2 _ 2bc\177.

From the right triangle BDC, we.have:

a \177= h 2 + (,)

-Let us computeeachof the squares h 2 and (a') 2. From the right
triangleBAD,we find: h 2 = c2- (c')2. Onthe otherhand, a' = b-c'
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(Figure193)ora' = c':-b (Figure 194). In both cases we obtain the
sameexpression for (a')2:

\275,)2 = (b - \177')\177= \275'- b) \177= b \177- 2\177' + \275,)2.

Now the equality (,) can be rewrittenas

a2 = c2 - (c')2 + b 2 - 2bc' + (c')2 = c2 + b2 - 2bc'.

c

Figure 193 Figure 194

D

191. Theorem. In an obtuse triangle, the squareof the
side opposite to the obtuse angle is equal to the sum of
the squaresof the othertwo sides plus twice the product
of (any) one of these two sides and the segment on the ex-
tension of this side between the -vertex of the obtuse angle
and the foot of thealtitudedrawn to this side.

Let AB be the sideofAABC (Figure 194), opposite to the obtuse
angle C, and BD the altitude dropped to the extension of another
side, e.g. AC. It is required to prove that

AB 2 = AC 2 + BC 2 + 2AC. CD,

or, using the abbreviated notation shown in Figure 194, that

c2 = a 2 + b2 + 2ba\177.

From the right triangles ABD and CBD, we find:

\1772 = n2 + \275,)\177 =\177 _ \27592 + (\177, + b)\177 =

a 2 - (a')2 + (a') 2 + 2ba' + b 2 = a 2 + b2 + 2ba\177.
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192. Corollary. From the last three theorems, we conclude,

that the square of a side of a triangle is equal to, greater than, or
smaller than the sum of the squares of the other two sides, depending
on whether the angleoppositeto this side is right, acute, or obtuse.

Furthermore, this impliesthe converse statement: an angle of a
triangle turns out to be right, acute or .obtuse, dependingon whether

the square of the opposite side is equal to, greater than, or smaller

than the sum of the squares of the other two sides.

193. Theorem. The sum of the squares of the diagonals
of a parallelogramis equal to the sum of the squares of its
sides (Figure 195). '

B C

A E s D F,

Figure 195

From the vertices B and C of a parallelogram ABCD, drop the
perpendiculars BE and CF to the base AD. Then from the triangles
ABD and ACD,we find:

BD 2 = AB 2 + AD2 - 2AD . AE, AC 2 = AD 2 + CD 2 + 2AD. DF.

The right triangles ABE and DCF are congruent, since they have

congruent hypotenuses and congruent acute angles, andhenceAE =

DF. Having noticed this, add the two equalities found earlier. The

summands -2AD. AE and +2AD.DF cancel out, and we get:

BD 2+AC 2 = AB 2+ AD 2 + AD 2+ C'D2 = AB 2+ BC 2 + G'D 2 + AD 2.

194. We return to studying geometric means in a disk.
Theorem. If through a point(M,Figure 196), taken inside

a disk, a chord (AB) and a diameter(CD)are drawn, then

the product of the segments of the chord(AM.MB) is equal

to the product of the segments of the diameter(CM.MD).

-- Drawing two auxiliary chords AC and BD, we obtain two tri-

angles AMC and DMB (shadedin Figure 196) which are similar,
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since their angles A. and .D are congruent as inscribedintercepting

the same arc BC, and the ahglesB and D are congruent as inscribed

intercepting the same arc AD. Fromsimilarity. of the triangles we
derive: AM: MD = CM: MB,or equivalently

AM. MB = CM. MD.

K

A

C

D B

M

L

F

Figure 196 Figure 197

195. \275orollaxies. (1)For all chords (AB, EF, KL, Figure 196)
passing through the same point (M) inside a disk, the productof the

segments of each chord is constant, i.e. it is the same for all such
chords, since for each chord it is equal to the productofthe segments
ofthe diameter. '-

(2) The geometric mean between the segments(AM and MB) of
a chord (AB), passing through a point (M) given inside a disk, is

the segment (EM or MF) of the chord (EF) perpendicularto the

diameter (CD), at the given point, because the chordperpendicular
to the diameter is bisected by it, and hence

EM = MF = JAM.MB.

196. Theorem. The tangent (MC, Figure 197)from a point
(M)takenoutsidea disk is the geometric mean between a
secant (3//A),drawnthroughthe samepoint,andtheexterior

segment of the secant (MB).
Draw the auxiliary chords AC and BC, and consider two triangles

MCA and MCB (shaded in Figure 197). They are similar because
ZM is theft common angle, and ZMCB = ZBAC sinceeachofthem
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is measured by a half of the arc BC. Taking the sides MA and MC
in AMCA, and the homologoussidesMC and MB in AMCB, we
obtain the proportion:MA: MC= MC: MB and conclude, that

the tangent MC is the geometricmean between the segments MA
and MB of the secant.

197.Corollaries. (1)The product of a secant (MA, Figure
197), passing through a point (M) outside a disk, and the exterior
part of the secant (MB) is equal to the square of the tangent(MC)
drawn from the same point, i.e.:

MA. MB = MC2.

(2) For all Secants (MA, MD, ME, Figure 197), drawn from a

point (M) given outside a disk, the productof eachsecant and the

exterior segment of it, is constant, i.e. the product is the same for
all such secants,becausefor each secant this product is equal to the
squareMC2 of the tangent drawn from the point M.

198.Theorem. The product of the diagonals of an in-
scribedquadrilateralis \177qual to the sum of the products of
its oppositesides.

This proposition is called Ptolemy's theorem after a Greek
astronomerClaudius Ptolemy (85 - 165 A.D.) who discoveredit.

A A

D D

Figure 198 Figure 199

Let AC and BD be the diagonals of an inscribed quadrilateral

ABG'D (Figure 198). It is required to prove that

AC. BD = AB. CD + BC. AD.
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Construct the angle BAE congruent to ZDAC, and let E be the
intersectionpointofthe sideAE of this angle with the diagonal BD.
The trianglesABE and ADC (shaded in Figure 198) are similar,
sincetheir angles B and C are congruent (as inscribedintercept-

ing the same arc AD), and the anglesat the commonvertex A are

congruent by construction. From the similarity, we find:

AB:AC=BE:CD, i.e. AC.BE=AB.CD.

Consider now another pair of triangles, namely/\177ABC and Z\177AED

(shaded in Figure 199). They are similar, sincetheiranglesBACand

DAE are congruent (as supplementing to ZBAD the anglescongru-
ent by construction), and the angles ACB and ADB are congruent

as inscribed intercepting the same angle AB. We obtain:

BC:ED=AC:AD, i.e. AC.ED=BC.AD.

Summing the two equality, we find:

AC(BE + ED) = AB. CD+ BC.AD, where BE + ED = BD. .

EXERCISES

Prove theorems:
4{00.Ifa diagonal divides a trapezoid into two similar triangles, then
this diagonalis the geometricmean between the bases.

401.* If two disks are tangent externally, then the segment of an ex-
ternalcommontangent between the tangency points is the geometric.
mean between the diameters of the disks.

\1770\177. If a square is inscribed into a right triangle in such a way

that one side of the square lieson the hypotenuse, then this side
is the geometricmeanbetween the two remaining segments of ,the
hypotenuse.
\177,03.* If AB and CD are perpendicular chords in a circleof radius

R, then AC 2 +'BD 2 = 4R\177.

404. If two circles are concentric, then the sum of the squares of

the distances from any point of one of them to the endpointsof any

diameter of the other, is a fixed quantity.

Hint: See \365193.

\177,05. If two segments AB and CD (or the extensionsofboth seg-
ments) intersect at a point E, such that AE. EB = CE. ED,then

the points A, B, C, D lie on the samecircle.
Hint: This is the theorem converse to that of \365195 (or \365197).
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4{06.*In every AABC, the bisector AD satisfies AD2 = AB. AC-
DB . DC.
Hint: Extend the bisector to its intersection E with the circum-
scribedcircle,and prove that AABD is similar to AAEC.
4{07.\177In every triangle, the ratio of the sum of the squares of all

medians to the sum of the squaresofallsidesisequal to 5/4.

4{08. If an isosceles trapezoid has basesa and b, lateral sides c, and
diagonals d, then ab+ c2 = d \177.

4{09. The diameter AB of a circleis extendedpastB, and at a point

C on this extensionCD _1_ AB is erected. If an arbitrary point M
of this perpendicularisconnected with A, and the other intersection
point of AM with the circle is denoted A \177,then AM. AA \177is a fixed

quantity, i.e. it does not dependon the choiceofM.
4{10.'\177Given a circle (9 and two points A and B. Through these
points, several circles are drawn such that each of them intersects
with or is tangent to the circle O. Prove that the chordsconnecting
the intersection points of each of these circtes, as wellas the tangents

at the points Of rangehey witch the circle O, intersect (when extended)
at onepoint lying on the extension of AB.

4{11. Using the resultofthe previous problem, find a construction of
the circle passingthrough two given points and tangent to a given
circle.

Find the geomegriclocusof:
4{/2. Points for which the sum of the squaresof the distancesto two

given points is a fixed quantity.
Hint: See \365193.

4{/$. Points for which the difference of the squaresof the distances
from two given points is a fLxedquantity.

Compugagionproblems
4{/4{. Compute the legs of a right triangle if the altitude dropped
from the vertex of the right angie divides the hypotenuse into two

segments ra and n.

4{/5. Computethe legsofa right triangle if a point on the hypotenuse
equidistantfromthe legsdivides the hypotenuse into segments 1S and
20 cralong.
4{16.The \177enters of three pairwise tangent circles are verticesof a
right triangle. Compute the smallest of the three radii if the other

two are 6 and 4 cm.
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4(1 7. From a point at a distance a from a circle, a tangent of length
2a is drawn. Compute the radius of the circle.
\177 $. In the triangle ABe, the sidesmeasureAB = ?,/?C \177 15, and

AC - 10 units. Determineif the angle A is acute, right, or obtuse,
and computethe altitude dropped from the vertex t3.
\17719. Compute the rsdius of a circle which is tangent to two smaller

sides of a triangle and whosecenterlieson the greatest side, if the
sides are 10, 24 and 26 units long.

,{\1770. Through a point, which is 7 eraaway from the center of a circle
of radius ll cm,a chord of length 18 era is drawn. Compute the
segmentsinto which the point divides the chord.
\177/.Froma pointoutsideadisk,a tangent a and a secant are drawn.
Compute the length of the secant if the ratio of its part outsidethe

disk to the part inside the disk is equalto m ' n.

,{\177. Compute the base of an isoscelestrianglewith a lateral side 14
units and the medianto thisside11units.
Hint:Apply the theorem of \365193.

\177$.* Express medians of a triangle in terms of its sides.

\1774\177.* Express altitudes of a triangle in terms of its sides.
\1775.* Express bisectors of a triangle in terms of its sides.
\1776.* A vertex of a triangle lies on the circlepassing through the

midpoints of the adjacent sides and the barycenter. Compute the

median drawn from this vertex if the opposite side has length a.
4\17727.* In a triangle, the medians drawn to two sides of 6 and 8 era
long are perpendicular.Compute the_third side.

7 Trigonometric functions

199. Trigonometric functions of acuteangles.Let \177 be any

acute angle (Figure 200). On oneofitssides,take an arbitrary point

Air and drop the perpendicular MN from this point to the other side

of the ang]e. Then we obtain a right triangle OMN. Take pairwise
ratios of the sidesof this triangle,namely:

MN: O_M, i.e. the ratio of the legoppositeto the angle \177, to

the hypotenuse,

ON: OM, i.e. the ratio of the leg adjacent to the angle c\177, to

the hypotenuse,

MN: ON, i.e. the ratio of the legoppositetotheangle a, to

the leg adjacent to it,
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and the ratios reciprocal to them:

OM OM
MN' ON\"

ON

MN'

The magnitude of each of these ratios dependsneither
onthepositionof the point M on the side of the angle, nor
on thesideof the angle the point M is taken on.x

Indeed, if instead of the point M we take anotherpoint M' on
the same side of the angle (or a point M\"on the other side of it), and
drop the perpendiculars .}W\177N ' (respectively M\"N\") to the opposite
side',then the right triangles thus formed: /kOLI'N \177and

will be similar to the triangle OMN, becausec\177 is their common

acute angle. From the proportionaltry of homologoussidesofsimilar

triangles, we conclude:

MN

ON

Therefore,
the point

M'N' M\"N\" ON ON' ON\"

ON' ON\" ' MN M'N \177 M\"N\"' '\"

the ratios in question do not changetheir values when

M changes its position on one or the othersideof the
angle. Obviously, they do not change when the anglecr is replaced

by another angie congruent to'it, but ofcourse,they do change when

the measure of the angiechanges.

o N

Figure 200

Thus, to acute angles of every givenmeasure,therecor-
respond quite definite values of each of these ratios, and we

can therefore say that each of these ratios is a functionofthe angle

only, and characterizes its magnitude.
All the abo?eratiosare called trigonometric functions of the

\177ngle a. Out of the six ratios, the following four are used most often:

- the ratio of the legoppositeto the angle a, to the hypotenuse is
called the sine ofthe angle \177 and is denoted sin a;
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the ratio of the leg.adjacentto the angle \177, to the hypotenuse is
called the cosine of the angle\177 and is denoted cos c\177;

the ratio of the leg opposite to the anglec\177 to the leg adjacent
to it is calledthe tangent ofthe angle \177 and is denoted tan \177;

the ratio of the adjacent leg to the oppositeleg (i.e. the ratio
reciprocal to tan \177) is called the cotangent of the angle \177 and is

denoted cot \177.

Since each of the legs is smaller than the hypotenuse, the sine

and cosine of any acute angleis a positive number smaller than 1,
and since one of the legscan be greater, or smaller than the other
leg,or equal to it, then the tangent and cotangent can be expressed

by numbers greater than 1, smaller than 1, or equal to 1.

The remaining two ratios, namely the reciprocalsof cosineand

sine, are called respectively the secant and cosecant of the angle
\177, and are denoted respectively sec \177 and csc \177.

200. Constructing angles with given values of a trigono-
metricfunction.

(1) Suppose it is required to construct an anglewhosesineis equal

to 3/4. For this, one needs to constructa right triangle such that

the ratio of one of its legsto the hypotenuse is equal to 3/4, and take
the angleoppositetothisleg.To construct such a triangle, take any
small segmentand mark the segment AB (Figure 201) congruent to
4 such segments. Then construct a semicircle on AB as a diameter,

and draw an arc, of radius congruent to 3/4 of AB, centered at

the point B. Let C be the intersection point of this arc with the
semicircle. ConnectingC with A an_d B we obtain a right triangle
whose angle A will have the sine equal to 3/4.

A

Figure 201

(2) Construct an angle x satisfying the equation: cos x = 0.7.
The problemis solved the same way as the previous one. Takethe
segment congruent to 10 arbitrary units for the hypotenuseAB (Fig-

ure 201), and congruent to 7 such units for AC. Then the angle A
adjacent to this legwill be the required one.
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(3) Construct an angle x such that tan x = 3/2. For this, one

needs to construct a right triangle such that one of its legs is 3/2
timesgreaterthan the other. Draw a right angle (Figure 202),and

mark a segment AB of arbitrary length on oneofitssides,and the

segment AC congruent to \177AB on the other. Connecting the points
B and C, We obtain the angle B whose tangent is equalto 3/2.

c

A

Figure 202

The same construction can be appliedwhen the cotangent of the
angle x is given,but the required angle in this case will be the one
adjacent to the leg AC.

201. Behavior of trigonometric functions. It isconvenient

to describe the behavior of sine and cosineas the angle varies, assum-

ing that the length of the hypotenuse remains fixed and equal to a
unit of length,and only the legs vary. Taking the radius OA (Figure
203)equalto an arbitrary unit of length, describe a quarter-circle
AM, and take any central angle AOB = 2. Dropping from B the

perpendicular BC to the radiusOA, we have:

BC BC
sin a = -- --

OB 1
-- length of BC,

oc oc
cos\177 -- -- -- = length of OC.OB

Imagine now that the radius OB rotates about the centerO in the

direction pointed out by the arrow, starting from the position OA

and finishing in the positionOM. Then the angle a will increase
from 0\370to 90 \370,passing through the values/A\270B,/AOB',

etc. shown in Figure 203.In the process of rotation the length of the
legBC oppositetotheangle a, will increase from 0 (for a = 0\370) to

1 (for a = 90\370), and the length of the leg OC adjacentto the angle

2, will decrease from 1 (for a = 0\370) to 0 (for a = 90\370). Thus, when

the angle a increases from 0\370to 90\370\177 its sine increases from
0 to 1, and its cosinedecreasesfrom i to O.



Z T\177igo\177ome\177ric \234unc\177;ior\177s 16\177

Let us examine now the behavior of the tangent.Since the tan-

gent is the ratio of the oppositelegto the adjacent leg, it is conve-
nient to assumethat the adjacentlegremains fixed and congruent to

a unit of length, and the oppositelegvaries with the angle. Take the
segment OA congruentto a unit of length (Figure 204) for the fixed
leg of the right triangle AOB, and start changing the acute angle
AOB= c\177. By definition,

AB AB
tan c\177= \177 = -- = length of AB.

OA 1

M

C\" C' C

M N

$

o A A

Figure 203 Figure 204

Imagine that the point B movesalongthe ray AN starting from

the position A and goingupward fartherandfarther,passingthrough

the positions B', B \177',etc. Then, as it is clear from Figure 204,both
the angle c\177and its tangent will increde. When the pointB coincides
with A, the angle c\177= 0 \370, and the tangent is also equal to 0. When

the point B moves higher and higher, the angle (\177 becomes closer

and closer to 90\370, and the value of the tangent becomesgreaterand

greater, exceeding any fixed number (i.e. grows indefinitely). In
such cases one says that a function increases (or grows) to infinity

(and expresses \"infinity\" by the symbol \177). Thus, when the angle
increases from 0\370 to 90 \370, its tange\177 increases from 0 to \177.

From the definition of the cotangent as the quantity reciprocal to

the tangent (i.e. cot x = 1/tanx), it follows that when the tangent
increases from 0 to oo,the cotangent decreases from oo to 0.

202. Trigonometric relationships in right triangles.We

have defined trigonometric functions of acute anglesas ratiosofsides
of right triangles associated with these angles. Vice versa, one can
use the values of trigonometric functions in order to expressmetric
relationships in right triangles.
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(1) Froma right triangle ABC (Figure 205), we find: b/a =
sinB= cosC,c/a= cos B = sin C, and therefore

b = asinB = acosC', c = acosB = asinC',

i.e.a leg of a right triangle is equal to the product of the hypotenuse

with the sine of the angle opposite to the leg, or with the cosine of

the angle adjacent to it.
(2) Fromthe same triangle, we find: b/c = tanB = cot C and

c/b = cot B = tan C, and therefore

b=ctanB=ccotC, c=bcotB=btanC,

i.e. a leg of a right triangle is equal to the productof the other leg

with the tangent of the angleoppositeto the former leg, or with the
cotangent of the angle adjacentto it.

Notice that /B = 90 \370-/C. It follows therefore that for any

angle c\177

cos c\177= sin(90 \370- a), sin \177 = cos(90 \370- a),

tan(90 \370- c\177) = cot c\177, cot(90 \370- a) = tana.

According to the Pythagorean theorem, we have a 2 = b2 + c2.
Using this we arrive at the following fundamental identity relating

the sine and cosine functions: the squares of thesineandcosine
of the same angle add up to one:

sin\177a \177-cos 2 a = 1 for any angle

203. Somespecialvaluesoftrigonometricfunctions. Con-

sider the right triangle ABC (Figure 206) such that its acute an-
gle B = 45\370. Then the other acute angle of this triangle is also
equal to 45 \370, i.e. the right triangle is isosceles: b = c. Therefore

= + = = i.e. = 1/V.

Besides, b/c = c/b = 1. Thus

sin 45 \370-- cos 45 \370= -- tan 45\370= cot 45 \370= 1.

__ 6According to \365148, the hypotenuse a of an isosceles right triangle is incom-
mensurable with its leg b. Since a/b -\177x/\177, we conclude that the number \177/\177is
irrational.
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Consider now the right triangle ABC (Figure 207)suchthat its
acuteangle B = 30 \370. According to the result of \36581, the leg opposite

to this angle is congruentto a half of the hypotenuse. Thus

1
sin 30\370= cos 60 \370= -.

2

Now it follows from the Pythagorean theorem that

= =

Finally, sincetanB = b' c= (1/2)a'(v/-\177/2)a, we have:

tan 30 \370= cot 60 \370=
tan 60 \370= cot 30 \370= x/-\177.

b

B c A

C

B b A

Figure 205 Figure 206

b

C

Figure 207

b

204. Trigonometric functions of obtuse angles. Definitions

of trigonometric functions of acute angles can be successfully gener-

alized to arbitrary angles using the conceptof the number line and

negative numbers, discussed in \365153.

Consider an arbitrary central angle BOA = c\177 (see Figure 208,

where the angle c\177is shown obtuse) formed by a radius OB with the

fixed radius OA. To define cos c\177,we first extend the radius OA to the
infinite straight line, and identify the latter with the numberline by

taking the center O and the point A to represent the numbers 0 and
I respectively.Then we drop the perpendicular from the endpoint
of the radius B to the line OA. On the number line OA, the foot

of this perpendicular represents a real number which is taken for the

definition of the cosine of the angle c\177. To define sine, we rotate
the number line OA counter-clockwise through the angle of 90\370, and
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thus obtain another number line, OP, perpendicular to OA. The
foot of the perpendiculardroppedfrom the point B to the line OP
representsthe number sin \177. Translating the line OP we obtain a
third number line AQ tangent to the circle at the point A. Then ,the

intersection point of the extended lineOB marks on the number line

AQ the value of tan \177. Finally, sec q, csc c\177, and cot c\177, are defined

as the reciprocals of cos \177, sin c\177, and tan c\177respectively.

-I

Q

I

A

tan \177

Figure 208

Some properties of trigonometric functions are obvious from Fig-

ure 208. For example, when the angle \177 is obtuse, the values cos \177

and tan \177 are negative, and sin c\177positive. Moreover:

sinq = sin(180 \370- \177), cos\177 = - cos(180 \370- \177),

tan c\177= - tan(180 \370- \177), cot c\177= - cot(180 \370- \177).

205. The law of cosines. The notionofthe cosinefunction for

arbitrary angles allows one to unify the results of \365190 and \365191 and

express the square of one sideofa triangle in terms of the opposite
angle and the othertwo sides, in a single formula known as the law
of cosines.

Theorem. The square of one side (c, Figure209) of every

triangle (ABC) is equal to the sum of the squaresoftheother
two sides (a and b) minus twice the product of the latter two

sides with the cosine of the angle (C) oppositeto theformerside:
c 2 = a 2 + b2 - 2abcosC.
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In.deed, according-to.the result of \365190 or \365191, when the angle
C is acuteorobtuse,we have respectively:

c 2=a 2+b 2-2a. CD, or c2=a 2+b2'+2a.CD, (,)

where CD is the distance from the vertex C to the perpendicular BD
droppedfromthe vertexB to theopposite side. According to the
definition of the numbercosC (which is positive when ZC is acute,
and negativewhen ZC is obtuse), CD - b cos C in the first case,
and CD = -bcosC in the second. Substituting this value of CD

into the correspondingequation b%,)_, we obtain the same resultingformula in both cases:c\177= a 2 + 2ab cos C as required. Finally,

when the angle C is right, we ha'\177e cos C = cos 90 \370- 0. Therefore
the law of cosines turns in this case into the equality c2 = a \177+ b2,

which holds true due to the Pythagoreantheorem.Thus the law of

cosines holds true for any triangle.

A D A

Figure 209 Figure 210

EXERCISES

428. Computethe values of the sine and cosine of the angles90\370,

120 \370, 135 \370, 150 \370, and 180 \370.

429. For which of the angles 0\370, 90 \370, and 180 \370are the values of the
functions tan and cot defined?

430. Compute the values of the tangentand cotangentof120\370, 135 \370,

and 150 \370.

431. Prove that sin(c\177 + 90 \370) = cos c\177, cos(c\177 + 90 \370) = sin (\177.

432. Construct the angles a such that: (a) cosa = 2/a, (b) sins =
-1/4, (c)tanc\177 = 5/2,-(d)cotc\177 =-7.
433. Compute two sides of a triangle, if the third sideis a, and the

angles adjacent to it are 45\370and 15 \370.
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\177{$\177{. Is the triangle with the sides 3, 7, and 8 cmacute, right, or

obtuse? Compute the angle opposite to the middle side.

\177{$5. Compute the side AB of/kABC if AC = 7, BC = 5, and
/B = 120o.
\177$6.* Compute the sine and cosine of: (a) 15\370, (b) 22\37030\177.

\177$7.* Compute cos 18 \370.

Hint: The bisector drawn to a lateral sideof an isosceles triangle

with the angle 36\370 at the vertex cuts off a triangle similarto the

original one.

\17738.* Prove that 'if from the endpointsof a diameter of a circle: two

intersecting chords are drawn, then the sum of the products of each
chord and the segmentofit from the endpoint of the diameter to the
intersectionpoint is a constant quantity.

\17739. Prove that a side a of a triangIeis expressed through the op-

posite angle and the radius R of the circumscribed circle as a =
2RsinA.
\1770. Derive the law of sines: in every triangle, sidesare propor-
tionalto the sines of the opposite angles.

,/\177 1.* Two right triangles lie on the oppositesidesof their common

hypotenuse h. Express the distance between the verticesof the right

angles through h and the sines of acute anglesof the triangles.

Hin\177: Apply Ptolemy's theorem.

\1772. Prove the addition law for the sine function:

sin(e +/\177) = sin a cos fi + cos a sinfl.
Hint:Apply the result of the previous problem.
\1773.*On a given segment AB, a point M is chosen, and two con-

gruent circles are drawn: through A and M, and M and B. Find

the geometric locus of the second(i.e. other than M) intersection

points of such circles.

8 Applications of algebra to geometry
206. The golden ratio. One says that a segmentis divided in

the extreme and mean ratio if the greaterpart is the geometric

mean between the smaller part and the whole segment. In other

words, the ratio of the wholesegmentto the greater part must be

equal to the ratio of the greaterpart to the smaller one. 7 We will
solve herethe following construction problem:

?This ratio is known under many names, such as: the golden ratio, golden
section,golden mean, and also the divine proportion.



8. Applicationsofalgebra\177o \177eometry 171

Problem. To divide a segment in the extreme and mean ratio.

The problem will be solved if we find one of the two required
p\177rts, e.g. the greater one. Let. us assume first that the problem in
question is not about the constructionofthispart, but only about

the computation of its length. Then the problemcan be solved al-

gebraically. Namely, if a denotesthe length of the whole segment,
and x the lengthof the greater required part, then the length of the
other part isa - x, and the requirement of the problem is expressed
by the equation:

x 2-a(a-x), orx \177'+ax-a2-0.

Solving this quadratic equation we find two solutions:

xl = 2 + +a2' x2 2 + a\177

We discard the second solution as negative, and simplify the first

one:

v\177a a v/'\177 \177 1
---- a,

2 2 2

Thus the problemhas a unique solution. If we manage to construct
a segmentwhose length is given by this formula, then our original
problemwill be solved. Thus the problem reduces to constructinga
given formula.

i

A c o

Fi9ure 211

In fact it is moreconvenient to construct this formula in the form
it had beforethe simplification. Considering the expression

we notice that it represents the length of the hypotenuse of a right
triangle'whoselegsare a/2 and a. Constructing such a triangle and
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then subtracting a/2 from its hypotenuse, we find the segment xl.
Therefore the construction can be executedas follows.

Bisect the given segment AB = a (Figure211)at the point C.

From the endpoint B, erect the perpendicularand mark on it the
segment BD = BC. ConnectingA and D we obtain a right triangle
ABD whose legs axe AB = a and BD = a/2. Therefore its hy-

potenuse AD = \177/a 2 + (a/2) 2. To subtract a/2 from it, describe an

arc BE of radius BD = a/2 centered at the point D. Then the re-
mainingsegmentAE of the hypotenuse will be equal to x\177. Marking

on AB the segment AC = AE, we obtain a point C, which divides
the segmentAB in the extreme and mean ratio.

207. The algebraicmethodofsolving construction prob-

lems. We have solved the previous problem by way of applying al-
gebra to geometry.Thisisa general method which can be described
as follows. Firsfly one determines which line segment is required in
orderto solve the problem, denotes known segments by a, b,c,...,and

the required segment by x, and expressesrelationshipsbetweenthese
quantities in the form of an a\177gebraic equation, using requirements of
the problem and known theorems. Next, applying the methods of al-
gebra,onesolves the equation, and then studies the solution formula
thus found, i.e. determines for which data the solution exists,and
how many Solutions there axe. Finally, one constructs the solution
formula, i.e. describes a construction by straightedge and compass
ofa segment whose length is expressed by this formula.

Thus the algebraic method- of solving geometric construction
problems, generally speaking,consistsof four steps: (i) deriving an
equation, (ii) solving it, (iii) studying the solution formula, (iv) con-
structing it.

Sometimesa problem reduces to finding several line segments.
Then one denotestheir lengths by several letters x,y,z,..., and
seeks a systemof as many equations as there are unknowns.

208. Construction of elementary formulas.Supposethat

solving a construction problem by the algebraic method we arrive

at a solution formula which expressesa requiredlength x through

given lengths a, b, c,... usingonly the arithmetic operations of addi-
tion, subtraction, multiplicationand division, and the operation of
extracting square roots. We will show here, how to construct such a
formula by straightedge and compass.

First, one of the givensegments,e.g.a, can be taken for the unit
Oflength. We may assume therefore that all segments are represented
by numbers. Respectively, the task of constructing the formulas
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expressing the requiredsegmentthrough given segments is reduced to
the problemofconstructingthe required number x expressed through
the given numbers a = 1,b,c,...by means of the four arithmetic
operations and by extracting square roots. Thus it suffices to show
how to obtain the result of these five elementary operations with

given numbers, using straightedge and compass.
(1)Addition and subtraction of numbers represented by given

segmentscanbe easily done by marking the segments on the number
line (using compass).

(2) Multiplication and division can be doneonthebasisofThales'
theorem by intersecting sides of an angle by parallellines,as shown

in Figure 212. Namely, the proportions

x c x b

and\276= c

are equivalent to x = bc and x = b/c respectively.

(3) To extract the square root x of a given number b, it suffices
to construct the geometricmeanbetween b and i as shown in Figure
213.

Figure 212 Figure 213

Thus, any algebraic expressions involving only arithmetic
operationswith and square roots of given numbers can be
constructedby straightedge and compass.

Remark. Conversely, as we will see in \365213, using straight-

edge and compass one can constructonly those algebraic expressions

which can be obtained from given numbersby a finite succession of
arithmetic operations and extractionofsquareroots.

EXERCISES

JJJ. Construct the angle \1770d.
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Ii

4{4{ 5. Construct an isosceles triangle such that the bisectorofan angle

adjacent to the base cuts off a triangle similar to it.

4{4{6.Given three segmentsa, b, and c, construct a fourth segment x
suchthat x: c= a2 : b 2.

4{4{7. Construct segmentsexpressedby the formulas: (a) x - abc/de,
(b) x---- v/a 2 q-bc

4{4{8. Given the base a and the altitudeh of an acute triangle, com-
pute the side x ofthe square inscribed into the triangle, i.e. such
that onesideofthe square lies on the base, and the oppositevertices
on the lateral sides of the triangle.

4{4{9.A common tangent is drawn to two disks which have the dis-
tance d between the centers, and the radii R and r. Compute the

position of the intersection point of this tangent with the Iine of

centers, when the point lies: (i) to one side of both centers, or (ii)
between them.

\17750. Prove that if two medians in a triangleare congruent, then the

triangle is isosceles.
I-I\361nt: Use the algebraic me\177od and \365193.

4{ 51. In the exterior of a givendisk,find a point such that the tangent
from this point to the disk is equal to a half of the secant drawn from
this point throughthe center.

H\361m:: Apply the algebraic method.

4{52. Through a given point outside a given disk, construct a secant
that is divided by the circle in a given ratio.
4{53.Inscribea circle into a given sector.

4{ 54{.* Construct a triangle given its altitudes.
Hint: First derive from similarity of triangles that the altitudes
ha,hb, hc axe inversely proportional to the respective sidesa,b, c, i.e.

.\177
that ha' hb ,\177c-a ' \177' c'

9 Coordinates

209. Cartesian coordinates. We saw in \365153 how to identify

points of a straight linewith real numbers. It turns out that points
of a planecan similarly be identified with ordered pairs of real num-
bers. One important way of doing this is to introduce Cartesian
coordinates.8 To construct a Cartesian coordinate system on

SThe term Cartesian originates from Cartesius, the Latinized name of Ren\177

l\177escartes (1696 - 1650), the French philosopher who introduced into geometry
the systematicuse of algebra.
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the plane, pick a.point.O (Figure214)and two perpendicular lines

passing through it. Then picka unit of length, and mark segments
OA and OB of unit length on the first and second line respectively.
ThepointO is called the origin of the coordinate system, and the
infinite straight lines OA and OB the 1st and the 2nd coordinate
axesrespectively.

Next, identify each of the coordinate axes with the numberline
by choosing the origin to represent the number 0 on eachof them,

and the point A (respectively B) to representthe number i on the

1st (respectively the 2nd)axis.

P N'

M

-3 -2 - 1

B 1

0

-I

A

Figure 214

Now, given a coordinatesystem,to any point P on the plane, we
associatean ordered pair (x, y) of real numbers calledrespectively
the 1st and the 2rid coordinate of P. Namely, we draw throughP
two lines PN and PM, parallel to th\177 Coordinate axes OA and OB
respectively. The intersectionpoint M (respectively N) of the line
OM (respectively ON) with the 1st (respectively the 2nd) coordi-
nate axis represents on this axis a real number, which we take for

x (respectively y). For instance, the point P'in Figure214has the

coordinates x'- -3, and y = 2. Vice versa, the point P can be re-
coveredfrom its coordinates (x, y) unambiguously. Namely, mark on
the 1stand 2nd coordinate axes the points representing the numbers
x and y respectively, and erect perpendiculars to the axesfrom these

points. Obviously, P is the intersection point of theseperpendicu-

lars. Therefore we have established a correspondencebetweenpoints
of the planeand ordered pairs of their coordinates. Clearly, the co-
ordinatesin this construction can be arbitrary real numbers, and we

will write P(x, y) for a point P whose 1st and 2nd coordinates are
given by the numbersx and y respectively (e.g. P(-3, 2) is the point
denoted'Pwhich has the coordinates x = -3 and y = 2).
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Ii

iL

210. The coordinate distance formula.

Problem. To compute the length of the segment between two

points P(x, y) and P' (x', y\177) with given Cartesian coordinates (Figure

Q Y

A

b sin C

Figure 215 Figure 216

The lines PQ and P'Q, parallel to the 1st and 2nd coordinate

axes respectively, are perpen'dicular (since the coordinateaxes are),

and therefore intersect at some point Q. Supposethat the segment

PP' is not parallel to eitherofthe coordinateaxes.Then PP' is the
hypotenuse of the right trianglePQP'. Applying the Pythagorean

theorem, we find the distance betweenP(x,y) and P'(x',y'):

In the special case when the segmentPP' is parallel to one of the
coordinate axes, the right trianglePQP' degenerates into this seg-

ment, but it is easy to checkthat the above distance formula remains
true (because in this caseeither x = x', or y = y').

211. The method of coordinates.One can successfully use

coordinates to solve geometricproblems.Hereis an example.

Problem. To re-prove the law of cosines usingcoordinates.\337

In AABC, let a, b, and c be the sidesoppositeto the vertices A,

B, and C respectively. It is requiredto prove that

c 2 = a 2 + b2 - 2abcosC.

Picka Cartesian coordinate system in such a way that the origin
is the vertex C (Figure 216), the positive ray of the 1st coordinate
axis contains the side CB, and the positive ray of the 2nd coordinate
axis lies on the samesideof the line CB as the vertex A. Then the
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vertices C, B, and A have coordinates respectively: (0,0), (a,0)
(by construction), and (bcosC, bsinC) (by the definition of sine
and cosine).The distance c between the vertices A and B can be
computed using the coordinate distance formula of \365210 with (x, y) =

(bcosC, bsinC) and (x',y')= (a,0),i.e.

c2 = (bcosC-a)2+(bsin C) \177- b2 cos \177C-2abcos C+a2+b 2 sin \177'C.

The first and the last summends here add up to b \177, since cos2C +

sin \177C -- 1. We obtain therefore c\177- a \177+ b \177- 2ab cos C as required.
212.Geometriclociandtheirequations. The geometric lo-

cus of all points, whosecoordinates(x,y) satisfy a certain equation,
is said to be describedby this equation, and is called the solution
locus of it. Many faxniliar geometric loci can be described in coor-
dinates as solutionlociof suitable equations. We discuss here the
equations of straight linesand circles.

Problem. To find the geometric locus of points P(x, y) whose

coordinates satisfy the equation c\177x + fly = % where \177, t\177, and ? are

given numbers.

y=px+q:\177\177

r

Q

X=r X=O

Figure 217

When c\177= fi = 0, the left hand side of the equation is equal to
0, and therefore the geometric locus in question contains all points
of the plane when 7 = 0, and contains no points when 7 -Y: 0. So,

let us assume that at least oneofthe coefficients c\177, fi is non-zero.

In this case we claimthat the points whose coordinates (x, y) satisfy
the equation c\177x + fly = ? form a straightline.Toseethis,we divide

the equation by fi, assuming that fi \177 0, and obtain a new equation
y = px+ q,where p = -\177/fi, and q = 7/fl. Of course,multiplication
or division of an equation by a non-zero number doesnot changethe
locusofpointswhose coordinates satisfy the equation. Thus we need
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to show that the locus of solutions of the new equation is a straight
line.

Consider first the casewhen q = 0. Points satisfying the equation
y = px are exactly the points with coordinates(x,y) of the form

(x, px). The locus of suchpointscontainsexactlyonepointfor each

value of x and includes: the originO (Figure217)whose coordinates

are (x,y) = (0,0); the point P with coordinates (x,y) = (1,p);
all points homothetic to P with respect to the center O and with
arbitrary homothety coe\177cients x (positive or negative). Thus the
locus is a straight line passing through the origin (and non-parallel
to the 2nd coordinate axis).

When q \177 0, we note that the locus does not containthe origin,

but instead contains the point (3 with coordinates(x,y) = (0,q).
Moreover, each point (x,px) of the line y = px is replaced by the

new point (x, px + q), obtainedfrom the old one by translation in
the direction of the segmentOQ.Thus the solutions to the equation
y = px + q form the line parallel to the line y = px and passing
through the point (\177(0, q).

Finally, when fi = 0, but \177 \177 0, we can divide the equation by.
\177 and obtain a new equation x = r, where r = -//\177. When r = 0,
the solutionslocusis the 2nd coordinate axis, and when r \177 0,

the solutions (x, y) = (r, y) form a straight line parallel to the 2nd
coordinateaxisand passing through the point (r, 0).

Since any line on the plane is parallel to oneof the linespassing

through the origin, we conclude that, vice versa, any straight line on

the plane is the solution locusto an equation of the form \177x+\177y = ?,

where at least one of the coefficientsc\177,fi is non-zero.

Problem. To find an equation of the straightlinepassingthrough

two points P\177(x \177,y\177) and P\177(x \177,y'\177) with \234iven coordinates.

Let P(x,y) (Figure 218) be a third point on the line passing
through P\177 and P\177( Then P is homothetic to P\" with respect to
the center P' (and with an arbitrary homothety coefficientwhich
can be positive or negative). The corresponding homothety of right
triangles(shadedon Figure218)yields the following proportion:

x - x\177 y - y\177

This equation makes sense whenever x \177\177 x \177and y\"\177 y'\177 (i.e. when

the segment P'P\177' is not parallel to any coordinate axis), and canbe



9. Coordinates 179

rewritten in the form \177x + fly = \"/with

1 1 x' y'
or= x\"-x \177' /\177- y,_y,, and f= x\"=\177r \177 y\"-y\"

When x \177= x\" (or y\177= y\,") the line is parallel to the 2nd(respectively
the 1st) coordinate axis, and has an equation x = x\177(respectively

y =

X\" X' X

P

Figure 218 Figure 219

Problem. To find an equation of the circle of a given radius R
and centered at a given point C(x0, Y0) (Figure 219).

The circle consists of all points P(x, y) whose distance to C is
equal to R. Using the coordinate distance formula, we obtain the
equation%/(x- x0) 2 + (y- yo) 2 = R or, equivalently,

(x - x0) 2 + (y - y0) 2 = R e.

213. Constructibility. We saw in \365206 that geometric quanti-

ties expressible in terms of given ones by means of elementary for-
mulas, i.e. by arithmetic operations and extraction of square roots,
canbe constructed by straightedge and compass. Now we can show,
usingthe methodofcoordinates,that the converse proposition holds
true:

Every geometric quantity which can be constructed from

given ones by means of straightedgeand compass,can be

expressed in terms of the given quantities using only arith-
meticoperationsandextractionof square roots.

The starting point is the observation that a construction by

strkightedge and compass is a finite succession of the following ele-
mentary constructions:
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(i) drawing a new line through two given points;
(ii) drawing a new circle, given its center and the radius;
(iii) drawing a circle, given one of its pointsand the center;
(iv) constructing a new point by intersecting two given non-

parallellines;
(v) constructing a new point by intersecting a givenline with a

given circle;

(vi) constructing a new point by intersecting two' given non-
concentric circles.

We can equip the plane with a Cartesian coordinate system and
assumethat \"given points\" are points whose coordinates are given
realnumbers, and \"given radii\" are segments whose lengths are given.

Thus it suffices to show that the elementaryconstructions(i) :-
(vi) give rise to points which have coordinates expressiblethrough

given numbers by elementary formulas, or to lines and circleswhose

equations have coefficients expressible by elementary formulas.

(i) As we have seen in '\365212, the line passing through two given
points has an equation whos\177 coefficients are expressed through the
coordinatesof thesepointsby means o\234 arithmetic operations.

(it) Similarly, the circle with given center and radiushasan equa-
tionwhose coefficients are arithmetic expressions of the coordinates
of the centerand the radius.

(iii) According to \365210, the distance between two given points
is expressedthrough their coordinates as the square root of an ex-
pressioninvolving only arithmetic operations. Thus the required
conclusion follows from (it).

(iv) To find the coordinates of the intersectionpointof two non-

parallel lines, whose equations have given coefficients(e.g. the lines
with the equations 2x - 3y = i and 6x+ 5y - 7), we can use one
of the equations to express one of the coordinates through the other
one(e.g.express x - (1+ 3y)/2 - 0.5+1.5yfrom the first equation),

substitute the expression into the otherequation (i.e. write 6(0.5 +

1.5y) +5y - 7, or 8y -- 4), find the value of the othercoordinatefrom

the resulting equation (y = 4/8 = 0.5),and then compute the value

of the former coordinate (x - 0.5+ 1.5 x 0.5 - 1.25). Thisprocedure
involves only arithmetic operations with the given coefficients./

(v) To find intersection points of a line and a circlewith the given

equations

= and (x - x0) + (y - y0? = Rs,
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we can express one of the coordinates through the otherfrom the first

equation (say, y -- px + q, if \177 \177 0), and substitute the result into the
secondequation.Theresulting equation (x - xo)2. d- (px d-q- yo) 2 =
R 2 is easily transformed (by squaring explicitly the expressionin

parentheses and reducing similar terms) to the form

Ax 2 + Bx + C = 0,

whereA, B, and C are arithmetic expressions of the given numbers
\177, \177, if, x0, Y0, and R. As it is well-known from algebra, solutions

of this equation are expressedthrough the coefficients A, B, and C,
using only arithmetic operations and.square roots, namely (if A -7! 0):

-B 4- \177/B \177- 4AC

2A

Thus the coordinatex of an intersection point, and therefore the
other coordinate y = px + q as well, are obtained from the given

numbers using only successions of elementary formulas.
(vi) Consider equations of two circles with given centers andradii:

Thecoordinates(x,y) of intersection points of the circles must satisfy

both equations. Squaring explicitly the parenthesis we rewrite the
equationsin this way:

We can replace the second equationin this System by the difference
of the secondand the first equation. The result has the form

2(xl --x2)xd- 2(yl -- Y2)Y ----% (,)

where ? is an arithmetic expression of given numbers. Since the two

circles are non-concentric, the differences xl- x2 and !/1-y2) cannot

both be zero, and hence the equation (,) describesa straight line.

The problem (vi) of intersecting two non-concentriccircleswith given

centers and radii is reduced therefore to the problem(v) of intersect-

ing a line and a circlewhose equations have given coefficients. Thus
coordinates of intersection pointsof two given non-concentric circles

are also obtained by successionsofelementaryoperationswith given

numbers.'
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Remark. As we know, two circles can have at most two common
points (\365t04), and such points must lie on a lineperpendicularto the

line of centers (\365117).Our result shows how to express an equation
of this line (namely (,)) in terms of the radii and the centers of the
circles.

EXERCISES

J55.Prove that the triangle with the vertices A(2,-3), B(6,4), and
C(10,-4) isisosceles.Is it acute, right or obtuse?
J56. Prove'that the triangle with the vertices A(-3, 1), B(4, 2), and
C(3,- 1)is right.

J57. Find coordinates of the midpoint of a segment in terms of

coordinates of its endpoints.
J 58. Provethat eachcoordinate of the barycenter of a triangle is the
arithmeticaverage of the corresponding coordinates of the vertices.
J 59. Thediagonals of a square ABCD intersect at the origin.Find
coordinates of B, C, and D,,if the coordinates of A are given.

J 60. Prove that the sumofthe squaresofdistances from the vertices

of a given square to a line passing through its center is constant.
J61. Computethe distancebetween the incenter and barycenter of
a right trianglewith legs 9 and 12 cm.

J 62. Provethat for any rectangle ABCD and any point ?, we have
?A 2 -F ?C 2 = PB 2 -F ?D 2.

J63. Can a trianglebe equilateral, if distances from its vertices to
two given perpendicular linesare expressed by whole numbers?

J6J. Using the methodof coordinates,re-prove the result of \365193:

the sum of the squaresofthe sidesofa parallelogram is equal to the
sum of the squaresof its diagonals.
J65. Prove that the geometric locus of points P(x, y) described by

the equation x 2 -F y2 = 6x q- 8y is a circle, and find its center and
radius.
J66. Using the method of coordinates, re-prove Apollonius' theorem
that the geometriclocusofpointsfrom which the distances to two
given points have a given ratio m \337n, not equal to 1, is a circle.
J 67.*Prove that if three pairwise intersecting circles are given, then
the three lines, each passing through the intersection points of two

of the circles, are concurrent.



Chapter 4

REGULAR POLYGONS

AND

CIRCUMFERENCE

i Regular polygons

214. Definitions. A polygon (\36531) is called regular if all of its
sidesarecongruent and all of its interior angles are congruent.More
generally, a broken line (not necessarily closed) is calledregular,
if all of its sides are congruent, and all of its angleson the same
sideof the broken line are congruent. For example, the brokenline
in Figure 220 has congruent sides and-angles, but it is not regular
since some of the congruent angles are situated on theoppositesides
of the line. The five-point star in Figure 221 is an exampleof a

Figure 220 Figure 221 Figure 222

closed regular brokenline,since all of its 5 sides are congruent as

183
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all of its 5 interior anglesare.But we do not consider it a polygon,
because it has self-intersections.An example of a regular polygon is
the pentagonshown in Figure 222.

Forthcoming theorems show that constructionofregularpolygons

is closely related to division of circlesinto congruent parts.

215. Theorem. if a circle is divided into a certainnumber
(greaterthan2) of congruentparts,then:

(1) connecting every two consecutive division points by

chords\177 we obtain a regular polygon\177 inscribed into the cir-
cle;

(2) drawing tangents to the circleat allthedivision points

and extending each of them up to the intersectionpoints
with the tangents at the nearest division points\177 we obtain

a regular polygon circumscribed about the circle.
Let the circle (Figure 223) be divided at the pointsA, B, C, etc.

into several congruent parts, and through these points the chords
AB, BC, etc. are drawn, and the tangents MBN, NCP, etc. Then
the inscribedpolygon ABCDEF is regular, because all its sidesare
congruent (as chords subtending congruent arcs), and all of its angles
are congruent (as inscribed angles, intercepting congruent arcs).

M

S

F

R

D

Q

N

C

P

A' M B'

S N

F'

E' Q D'

Figure 223 Figure 224

In order to prove regularity of the circumscribedpolygon

MNPQRS, consider the triangles AMB, BNC, etc. ThebasesAB,

BC, etc. of these triangles are congruent,and the anglesadjacentto
thebasesare also congruent because each of them has the samemea-

sure (since an angle formed by a tangentand a chord measures a half
of the arc contained insidethe .angle).Thus all these triangles are

--isosceles and congruent to eachother,and hence MN = NP - ...,
and LM = LN --' .., i.e. the polygon MNPQR$ is regular.
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216.Remark. If from the center O (Figure 224), we drop to
the chords AB, BC, etc. perpendicu]ars and extend them up to the

intersections with the circle at the points A//, /V, etc., then these
points bisect all the arcs and chords, and therefore divide the cir-
cle into congruent parts. Therefore, if through the points
etc. we draw tangents to the circle up to their mutual intersection
as explained earlier, then we obtain another circumscribed regular
polygon A\177C'D'E\177F', whose sides are parallel to the sides of the
inscribedone. Each pair of vertices: A and A ', \177 and \177, etc., lie

on the same ray with the center,namely on the bisector of the angle
A//ON and other such angles.

217. Theorem. If a polygon is regular, then;
(1)it is possible to circumscribe it by a circle;
(2) it is possibleto inscribea circle into it.

Figure 225

-' (1) Draw a circlethrough any three consecutive vertices A, B,
and C (Figure225)ofa regular polygon ABCDE and prove that it
will pass through the nextvertex D. For this, drop from the center
O the perpendicularOKtothechord BC and connect O with A and

D. Rotate the quadrilateral ABKO in space about the sideOKso
that it falls onto the quadrilateral DCKO. Then the line KB will

fall onto KC (due to equality of the rightanglesat thepointK), and

B will merge with C (since the chordBC isbisectedat K). Then

the side BA will fail onto CD (due to equality of the anglesB and

C), and finally, the point A will merge with D (since BA = CD).
This impliesthat OA will merge with OD, and therefore the points
A and D are equidistant from the center. Thus the point D lieson
the circle passing through A, B, and C. Similarly, this circle, which

passes through B, C, and D, will pass through the next vertex E,
etc; henceit passesthrough all vertices of the polygon.
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(2)It follows from part (1) that sides of a regularpolygon can be

considered as congruent chords of the samecircle.But such chords

are equidistant from the center, and thereforethe perpendiculars
OB/;,ON, etc.,droppedfrom O to the sides of the polygon, are
congruent to each other. Thus the circle described by the radius

\270_\177f from the center (P is inscribed into the polygon ABODE.

218. Corollaries. '(1) Any regular polygon (ABCDE, Figure

226) is convex, i.e. it liesononesideof each line extending any of
its sides.

Figure 226

Indeed, extend, for instance, the side BC and notethat it divides

the circumscribed circle into two arcs. Sinceall vertices of the poly-

gon lie on this circle,they must all lie on one of these arcs (because
otherwise the broken line BAEDC would intersect the segment
in contradiction to our definition of a polygon). Thus the whole

regular polygon lies in the disk segment (BAEDC in Figure 226)

enclosed between this arc and the lineBC,and hence on one side of
this line.

(2)As it is clear from the proof of the theorem,the inscribed and

circumscribed circles of a regular polygon are concentric.

219. Definitions. The common center of the inscribedand

circumscribed circle of a .regular polygon is calledthe centerofthis
polygon.It lieson each angie bisector of tl\177e polygon and on each
perpendicular bisector to its sides.Therefore, in order to locate the
center of a regular polygon, it suffices to intersect two of its angle
bisectors,or two perpendicular bisectors of its sides, or one of those

angle bisectors with one of those perpendiculars.
The radius of the circle circumscribed about a regular polygon is

calledtheradiusofthepolygon, and the radius of the inscribed circle
its apothem. The angie between two radii drawn to the endpoints
of any side is called a central angle of the regularpolygon. There
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are as many such angles as there are sides, and they all are 'congruent

(as central angles corresponding to congruent arcs).

Since the sum of all the centralanglesis 4d for 360\370), then each
of them is 4din (or 360\370/n), where n denotes the number of sides of
the regularpolygon. Thus, the central angle of a regular hexagonis
360\370/6 -- 60 \370, of a regular octagon (i.e. 8-gon) 360\370/8 -- 45 \370, etc.

220. Theorem. Regular polygons with the same number
of sidesaresimilar,and their sides have the same ratio as
their radii or apotheras.

To prove the similarity of regular n-gons ABCDEF and
A\177B'C\177D'E'F \177(Figure 227), it sufiSces to show that their anglesare
congruent and their sides are proportional. The anglesare congruent

because they have the same measure, namely 2d(n- 2)/n (see\36582).

Since AB = BC = CD = and A\177B \177= B\177C \177= C\177D ' = it is
obvious that

AB BC CD
A\177B \177 B\177C \177 C\177D t \"',

i.e. that the sides of suchpolygons are proportional.

E D
E' D'

F C F'

A' M' B'
A M B

Figure 227

Let O and 0' (Figure227) be the centers of the given regular
polygons,OA and OtA \177be their radii, and OM and OM \177be their

apothems. The triangles OAB and O\177A'B \177are similar, since the
angles of one of them are respectively congruent to the angles of the
other. It follows from the similarity that

AB OA OM
A\177B \177 O\177A\177 O\177M \177'

Corollary. Since the perimeters of similar polygons have the
sameratio as their homologous sides (\365169), then perimeters of reg-
ular n-gons have the same ratio as their radii or apothems.
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Example. Let a and b be the sides of regular polygons with
the samenumber of sides, respectively inscribed into and circum-
scribedabout the samecircle of radius R. Then the apothem of
the circumscribedpolygon is /r/. From the right triangle 2403//
(Figure227), we find the apothem 03// of the inscribed polygon:
O/V\1772 _ R2 _ (a/2)2 _--/\1772 _ a\177/4. Since the inscribed and circum-
scribedpolygons are similar, we can write the proportion between
theirsidesand apothems:

Thus we obtain a formula expressingthe sideof the circumscribed

regular polygon through the side and the radiusofthe corresponding
inscribed regular polygon.

221. Symmetries of regular polygons. In the circumscribed

circle of a regular polygon, draw through any vertex C the diameter
CN (Figure 228). It divides the circle and the polygon into two
parts. Imaginethat oneof t\177hese parts (say, the left one) is rotated
in spaceabout the diametersothat it fails onto the other (i.e. right)
part. Then onesemicircle will merge with the other semicircle, the
arc CB with the arc WD (due to the congruenceof these arcs),the

arc B24 with the arc DE (for the samereason),etc.,and therefore

the chord BC will merge with the chordWD, the chord AB with the
chord Dt\177, etc. Thus the diameter of the circumscribedcircledrawn

through any vertex of a regular polygonis an axisofsymmetry of this

polygon. As a consequence of this, eachpairofthe vertices such as B

and D, A and E, etc., lieon the same perpendicular to the diameter
CN and at the samedistance from it.

Draw also the diameter MN (Figure229)of the circumscribed'
circle, which is perpendicular to any side CD of the regularpoly-

gon. This diameter also divides the circle and the polygon into two

parts. Rotating one of them in spaceabout the diameteruntil it

falIs onto the other part, we find out that one part of the polygon
will mergewith the other part. We conclude that a diameterof the

circumscribed circle perpendicular to any side of a regular polygon is

an axis of symmetry of this polygon.

Consequently, each pair of vertices such as B and E, A and \234,

etc., lie on the same perpendicular to the diameterMN and at the
same distance from it.

-- If the number of sides of the regularpolygon is even, then the di-
ameter drawn through any vertex of the polygon also passes through
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the opposite vertex, and the diameter perpendicularto any side of

the polygon is also perpendicular to the oppositesideof it. If the

number of sides is odd, then the diameterpassing.through any vertex

is perpendicular to the opposite side, and conversely, the diameter

perpendicular to any side of sucha regular polygon passes through

the opposite vertex. For example,the regularhexagonhas 6 axesof
symmetry: 3 axes passing through the vertices, and 3 axesperpen-
dicular to the sides; the regular pentagon has 5 symmetry axes, each

one passing through a vertex and perpendicularto the opposite side.

A

c c M B
-\177D

E A E A

F

N N E

C

Figure 228 Figure 229 Figure 230

Any regular polygon with an even number of sides also has a
center of symmetry which coincides with the center of the polygon

(Figure 230). Indeed, any straight line/(L, connecting two points

on the boundary of the polygon and passing through its center \270

is bisected by it (as it is seen from th_e congruence of the triangles
OBK and \270EL shaded in Figure 230).

Finally, we can identify a regular n-gon with itself by rotating
it about its centerthrough the angle 4d/n in any direction. For
instance(seeFigure 230), rotating the hexagon 60 \370clockwise about

\270, we make the side AB go into BC, the sideBCintoCD,etc.
222.Problem. To inscribe into a given circle: (1) a square,(2)

a regular hexagon, (c) a regular triangle, and to express their sides
through the radius of the circle.

We will denote an the side of a regular n-gon inscribed into a
circle of radius R.

(1) On Figure 231, two mutually perpendicular diameters AC
and BD are drawn, and their endpoints axe connected consecutively
by chords.Theresulting quadrilateral ABCD is an inscribed square
(because its anglesare90\370each, and its diagonals are perpendicu-
lax). Fromthe right triangle A\270B we find, using the Pythagorean
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theorem, that

a\177 = AB 2 = AO \177+ OB 2 = 2R2, i.e. a4 -- X/\177R ---- R' 1.4142...

(2) On Figure 232, a chordcorresponding to a central angle of
60\370, i.e. to the central angle of a regularhexagon,is shown. In the

isosceles triangle AO]\177 each of the angles A and B is (180
60\370. Therefore the triangle is equiangular, and hence equilateral.
Thus

AB = AO, i.e. a6 = R.

Inparticularwe obtain a simple way of dividing a circleinto6congru-
ent parts by consecutively marking on it the endpoints of 6 chords,
each1 radius long.

B

A C

D

B

Figure 231 \" Figure 232 Figure 233

(3) To inscribe a regu]artriangle, divide a circle into 6 congruent
parts (Figure233),and then connect every other division point. The
triangleABC thus obtained is equilateral, and hence regular. Fur-
thermore,draw the diameter BD and connect A and D to obtain a
right triangle BAD. Fromthe Pythagorean theorem, we find:

223. Problem. To inscribe into a given circle a regular decagon
and to express its sidealo through the radius R.

Let us first prove the following important property of the regular
10-gon. Let AB (Figure234) be a side of the regular 10-gon. Then
the angle A\270B contains 36 \370, and each of the angles A and B of

the isosceles triangle A\270B measures (180 \370- 36\370)/2= 72\370. Bisect

the angle A by the line AC. Then each of the angles formed at the
vertex A contains 36 \370, and therefore AAC\270 is isosceles (as having
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two congruent angles),. i.e. AC = CO, and AABC is also isosceles
(since LB = 72\370, and ZAWB = 180 \370-72 \370-36 \370- 72\370), i.e. AB =

AC = GO. By the propertyof the anglebisector(\365184) we have the

proportion: AO : AB = CO: CB. Replacing AO and AB with the
congruent segments BO and GO,we obtain:

BO : CO = CO: CB.

In otherwords, the radius BO is divided at the point C in the ex-
treme and mean ratio (\365206),and CO is the greaterpart of it. Thus,

the side of a regular decagoninscribedinto a circle is congruent to

the greater part of the radius divided in the extreme and mean ratio.
In particular(see\365206), the side a\1770 can be found from the quadratic
equation:

x2 &Rx- R2=0, i.e. (ZlO -- L\177:
2

0.6180...

Now the constructionproblemis easily solved: divide a radius (e.g.
OA) in the extremeand meanratio as explained in \365206,set the
compass to the step congruent to the greater part of the radius,
mark with this step l0 points around the circle one after another,

and connect the consecutive division points by chords.

A B

0

Figure 234 Figure 235

Remarks. (1) In orderto inscribe into a given circle a regular
pentagon, one divides the circle into 10 congruent parts and consec-
utively connects every other point by chords.

(2) The 5-pointstar can be constructed 1 similarly by dividing
a circleinto 10 congruent parts and connecting the division points
skipping three at a time (Figure 235).

\177In some countries, this problem is of national importance.-- A.G.
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(3) The equality

2 1 \177 5 1

5 3 15 15 \1775

gives a simple way to inscribe a regular 15-gon,since we already

know how to divide a circleinto 5 and 3 congruent parts.

224. Problem. To double the number of sides of an inscribed
regularpolygon.

.This is a concise formulation of two distinct problems:given an

inscribed regular n-gon, (1) to construct a regular2n-goninscribed
into the same circle; (2) to compute the side of the 2n-gonthrough

the side of the n-gon and the radiusof the circle.
(1)Let AB (Figure 236) be a side of a regularn-goninscribed

into a circle with the center O. Draw OC _J_ AB and connect A with
C. The arc AB is bisected at the point C, and thereforethe chord
AC is a side of a regular 2n-gon inscribedinto the samecircle.

c

Figure 236

(2) In AAOC, the angle O is acute(since the arc ACB is smaller
than a semicircle,and hencethe arc AC is smaller than a quarter-
circle).Thereforethe theorem of \365190 applies:

a\177n = AC 2 = OA 2 + OC 2 - 20C. OD= 2R 2 - 2//. OD.

From the right triangle AOD, we find:

OD = x/'OA2 - ATD2 = \276/R 2 - (an/2). 2 -- V/R \370:- a2\177/4.

Thus

a\177n --- 2R 2 _ 2R\177R2 a\177n4
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The side a2n is obtained from this doubling formula by extracting
the squareroot.

Example. Let us compute the side of a regular12-gon,taking for

simplicity _R = 1 (and therefore a6 = 1). We have:

a2\1772=2-2 1 \177=2-2 =2-V\177, i.e.a\1772= -x/-\177.

Since the sides of regular n-gons are proportionalto their radii, then

for the side of a regular12-goninscribed into a circle of an arbitrary
radius R we obtain the formula:

al2 = -RV/2- x/\177 = R. 0.517...

225. Which regular polygons can be constructedby

straightedge and compass? Applying the methods describedin

the previous problems, we can, using only straightedgeand compass,
divide a circle into a number of congruent parts (and hence construct

the corresponding regular polygons) shown in the table:

3, 3.2, 3.2.2, ... generally 3 ' 2n;

4, 4.2, 4.2.2, ... generally 2n;

5, 5.2, 5.2.2, ... generally 5.2 n;

15, 15.2, 15 \3372 \3372, ... generally 3.5 \3372 n.

A German mathematician C. F. Gauss(1777-1855).proved that

using straightedge and compass, it is possible to divide a circle into

only such a prime numberof congruent parts, which is expressed by
the formula 22\177 + 1. For instance, it is possible to divide a circle

into 17 congruent parts, or 257 congruent parts, since 17 and 257

are prime numbersof the form 22\177 + i (17 = 222+ 1; 257 ---- 223 +

1). A proof of Gauss' theoremrequiresmethods which go beyond

elementary mathematics.

It is also proved that using straightedge and compass one can
divide a circleonly into such a composite number of congruent parts
which contains no other factors except: (1) prime factorsofthe form

22= + 1, in the first power; (2) the factor2, in any power.

Whole numbers Fn - 22= + 1 are called Fermat numbers af-
ter the remarkable French mathematician P. Fermat (1601-1665)
who conjectured (erroneously)that all such numbers are prime. At
present only the first five Fermat numbers are known to be prime:

Fo=3, F\177=5, F2=17, Fa=257, F4=65537.
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EXERCISES

4{68. Find a formula for the side an of a regular n-gon inscribedinto

the circle of radius/\177 for: (a) n = 24, (b) n = 8, (c) n = 16.
4{69.Find a formula for the sides of a regulartriangleand regular
hexagoncircumscribed about a circle of a given radius.
4{70.LetAB,BC, and CD be three bonsecutive sides of a regular
polygon with the center O. Prove that if the sides AB and CD
are extended up to their intersection point E, then the quadrilateral
OAEC can be circumscribedby a circle.

J71. Prove that: (a) every circumscribedequiangular polygon is

regular; (b) every inscribed equilateral polygon is regular.
J72.Give an example of.' (a) a circumscribed equilateral quadrilat-
eral which is not regular; (b) an inscribed equiangular quadrilateral
which is not regular.

J75. Prove that: (a) every circumscribed equilateral pentagon is

regular; (b) every inscribedequiangular pentagon is regular.

4{74{.* For which n doesthereexist:(a) a circumscribed equilateral

n-gon which is not regular; (b) an inscribed equiangular n-gon which
is not regular?
4{ 75. Prove that two diagonals of a regularpentagonnot issuing from

the same vertex divide each other in the extremeand mean ratio.

4{76.* Prove that if ABC'Dt\177FG is a regular 7-gon, then 1/AB =
1/AC+ 1/AD.
477.* Prove that the difference between the greatest and smallest
diagonals of a regular 9-gon is congruent to its side.
4{ 78. Cut off the corners of a squarein such a w\177y that the resulting
octagon is regular.
479. On a given side, construct a regular decagon.
4{80.Constructthe ang!es:18\370, 30 \370, 72 \370, 75 \370, 3 \370, 24 \370.

4 81. Inscribe into a square a regular'trianglesothat one of its ver-

tices is placed: (a) at a vertex of the square; (b) at the midpoint of
oneof its sides.
4{82.Into a given equilateral triangle, inscribe another equilateral
trianglesuchthat its sideis perpendicular to a side of the given one.
483. Given a regular n-gon circumscribed about a given circle, con-
structa regular 2n-gon circumscribed about the same circle.
-484{.*Divide a given angle congruent to 1/7th of the full angle into:

(a) three congruent parts; (b) five congruent parts.
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2 Limits

226. Length ofa curve.A segment of a straight line can be
comparedto another segment, taken for a unit, because straight lines
canbe superimposed onto each other. This is how we define which
segmentsto consider congruent, which lengths equal, or unequal,
what is the sum of segments, which segment is 2, 3, 4, ...times
greaterthan the other, etc. Similarly, we can compare arcs of the
same radius, because circles of the same radius canbesuperimposed.
However no part of a circle (or another curve)canbe superimposed

onto a straight segment, which makes it impossibleto decidethisway

which curvilinear segment should be assigned the same length as a

given straight segment, and hence which curvilinearsegmentshould

be considered 2,3,4, ... times longerthan the straight one. Thus we
encounter the needto define what we mean by circumference as the
lengthof a circle,when we compare it (or a part of it) to a straight

segment.

For this, we need to introduce a conceptof importance to all of

mathematics, namely the concept of limit.
227.Limit ofa sequence.In questions of algebra or geometry

one often encounters a sequenceof numbers following one another

according to a certain pattern. Forinstance, the natural series:

1, 2, 3, 4, 5, ...,

arithmeticor geometric progressions extended indefinitely:

a, a+d, a+2d, a+3d, ...,

a, aq, aq 2, aq 3, ...

are examplesofinfinite sequences of numbers, or infinite numerical
sequences.

For eachsuch a sequence, one can point out a rule by which its

terms are formed. Thus, in an arithmeticalprogression,each term

differs from the previous one by the samenumber; in a geometric

progression each two consecutiveterms have the same ratio.

Many sequences are formedaccordingtoa more complex pattern.

Thus, approximating \177/\177from below with the precision of up to: first

1/10, then 1/100, then 1/1000, and continuingsuch approximation

\337indefinite]y, we obtain the infinite numerical sequence:

1.4, 1.41, 1.414,1.4142,...
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Although we do not give a simplerule that would determine each
next term from the previousones,it isstillpossible to define each

term of the sequence. Forexample,toobtainthe4th term, one needs

to represent v/\177 with the precision of 0.0001, to obtain the 5-thterm,
with the precision of 0.00001, and so on.

Supposethat the termsof an infinite numerical sequence

al, a2, a3, ..., an\177 ...

approach a certain number A as the index n increases indefinitely.
This meansthe following: there exists a certain number A such that
howeversmalla positive number q we pick, it is possible to find a term'
in the given sequence starting from which all terms of the sequence
would differ from A by less than q in the absolutevalue. We will

briefly express this property by swing that the absolute value of the

difference an - A tends to 0) (or that the terms a\177 tend to A) as n
increases. In this casethe number A is called the limit of a given
numericalsequence.

For example, consider the sequence:

0.9, 0.99, 0.999, ...,

where each term is obtained from the previous one by adding the

digit 9 on the right. It is easy to see that the terms of this sequence
tendto1.Namely, the first term differs from I by 0.1,the secondby

0.01, the third by 0.001, and continuing this sequencefar enough, it

is possible to find a term, starting from which all the following terms
will differ from 1. by no more than a quantity, picked beforehand, as

small as one wishes. Thus we can say that the infinite sequence in
question has the limit 1.

Another example of g numerical sequence which has a limit is

the sequence of consecutive approximations (say, from below) to the

length of a segment (\365151), computed with the precision of: first up
to 1/10,then up to 1/100, then up to 1/1000, andsoon.The limit of

this sequence is the infinite decimalfractionrepresentingthe length

of the segment. Indeed, the infinite decimal fractionis enclosedbe-
tween two finite decimal approximations: one from above the other
from below. As it was noted in \365152, the difference between the

approximations tends to 0 as the precisionimproves. Therefore the

difference between the infinite fraction and the approximate values

must also tend to 0 as the precisionimproves. Thus the infinite dec-.
-imal fraction is the limit of eachof the two sequences of its finite
decimal approximations (onefrom above the other from'below).
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It is easy to see that not every infinite sequence has a limit; for

instance, the natural series 1, 2,3,4,5,..., obviously, does not have

any limit since its terms increaseindefinitely and therefore do not
approach any number.

228. Theorem. Any infinite sequence has at most one
limit.

This theoremis easily proved by reductio ad absurdurn. Indeed,
suppose that we are given a sequence

ai \177a2, a3, \337.\337, an, \337.\337,

which has two distinct limits A and B. Then, since A is a limit of
the givensequence,the absolute value of the difference a\177 - A must
tend t.o 0 as n increases.Since B is also a limit of the givensequence,
the absolutevalue of the difference an - B must also tend to 0 as n
increases. Thereforethe absolute value of the difference

(an- A)- (an - B)
for n sufficiently large must also tend to 0, i.e.become smaller than

any number picked beforehand as small as one wishes. But this

difference is equal to the differenceB- A, and therefore it is a certain
number different from 0.' This number does not depend at all on the
indexn, and hence does not tend to 0 when n increases.Thus our

assumption that there exist two limits of the numericalsequence

leads to a contradiction.

229. The limit of an i\177ncreasing sequence. Consider a se-
quence al, a2, a3, ..., an, ..., such that each term of it is greater
than the previous one (i.e. a\177+l \177 an), and at the same time all
terms of which are smaller than a certain number M (i.e. an \177 M

for all values of the indexn). In this casethe sequence has a limit.
230. Proof. Let

al, a2, a3, ..., an, ..., (*)

be a numerical sequence such that eachterm of it is greater than
the previous one (an+l \177 an), and such that among terms of this
sequencethereisnoonegreater than a given number M, say, there
is no term greater than 10. Take the number 9 and checkif in the

sequence (,) there are terms greater than 9. Supposethat not. Then

take the number 8 and checkif in the sequence (,) there are terms
greater than 8. Supposethere are. Then write down the number 8,
divide the interval from 8 to 9 into 10 equal parts, and test consec-

utively the numbers 8.1, 8.2,... 8.9,i.e. check if in the sequence (,)
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there are\" terms greater than 8.1, and if yes, then decidethe same

question for 8.2, etc. Suppose that the sequence(..)contains terms

greater than 8.6, but contains no terms greater than 8.7. Then write

down the number 8.6, divide the interval from 8.6 to 8.7 into 10
equal parts, and test consecutively the numbers 8.61, 8.62,... 8.69.
Suppose that the sequence(,) contains terms greater than 8.64, but
contains no terms greater than 8.65. Then write down the number
8.64, and proceedby dividing the interval from 8.64 to 8.65 into 10
equalparts,etc. Continuing this process indefinitely we arrive at an
infinite decimalfraction:8.64...,i.e.at a certain real number. De-

note this number by c\177, and denote its finite decimal approximations
with n decimalplaces,from below and from above, by an and a n

respectively. As it is known (\177151),

1
and f

From our construction of the real number c\177, it follows that the se-
\177 but contains termsquence (.) contains no terms greaterthan a n

greater than an. 'Let ak be one of such terms:

!
OZn \177 ak \177 oz n.

Since the sequence (,) is increasingand containsno termsgreater

than an, we find that all of the following terms of the sequence: ak+l,
\177 i.e. if m > k, thena\177+2, ..., are also contained between an and an,!an \177 am \177 crn.

!
Since the real number a is also containedbetween an and an,

we conclude that for all m > k the absolute value of the difference
f = 1/10 n. Thus, foram - \177 does not exceed the difference c\177n - C\177n

any value of n one can find the number k such that for all ra \177_k we

have
1

[am -- a < i0n.
Since the fraction 1/10 n tends to 0 as n indefinitely increases, it

follows that the real number cr is the limit of the sequence (,).

EXER C!SES

485.Express precisely what one means by saying that terms an of

an infinit\177 numerical sequence tend to a number A as n increases
indefinitely.

486. Show that the sequence:1,1/2,1/3,..., l/n, ... tends to 0.
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-487. Show that the sequence:1, -1/2, 1/3,-1/4,..., _+_l/n, ...

tends to 0.

-488. Show that the natural series1,2,3,..., n, ... does not have
a limit.

-489.Show that the infinite sequence 1, -1, 1, -t, ... does not have

a limit.

-490. Formulate the rule describingwhich of two given infinite deci-
mal fractions representsa greater number.

-49/. Which of the decimal fractions representsa greater number:

(a) 0.099999 or 0.1000007 (b) 0.099999... or 0.100000...?
-4 92.* Prove that if an infinite numericalsequencetendstoa certain

limit, then the sequence is bounded, i.e. all terms of the sequence
liein a certain segment of the number line.
-493.Prove that a decreasing numerical sequence bounded below
tends to a certainlimit.
-49-4. Show that an infinite geometric progression a, aq, aq2, ...,
tends to 0 provided that the absolute value of q is smallerthan 1.

-495. An ant crawled 1 m first, then 1/2 m more, then 1/4 ra more,
then 1/8 m more,etc. What is the total distance the ant crawled.
-496.*Computethe sum of an infinite geometric progression a, aq,
aq2, ..., provided that the absolute value of q is smaller than 1.
Hint: Firstprove that the sum a + aq + aq2 +... + aq '\177of a finite

geometric progression is equal to a(1- qn+l)/(1 - q).

3 Circumference and ar: length

231.Two lemmas. The concept of limit gives us an opportunity

to define precisely what we mean by' the length of a circle. Let us
first prove two lemmas.

Lemma 1. .4 convex broken line (ABCD, Figure237) is

shorter than any other broken line (AEFGD) enclosingthe
firstone.

The expressions \"enclosing broken line\" and \"enclosed broken
line\" should be understood in the following sense. Let two broken

lines (like those shown in Figure 237)have the sameendpointsA and

D and be situated in such a way that one broken line (ABCD) lies
inside the polygon bounded by the other broken line together with
the segmentAD connecting the endpoints A and D. Then the outer
broken line is referred to as enclosing, and the inner one as enclosed.
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We intend to prove that the enclosed broken lineABCD,if it is
convex, is shorter than any enclosing broken line (nomatterconvex

or not), i.e. that

AB + BC + CD < AE + EF + FG + GD.

Extend the sidesof the enclosed convex broken line as shown in
Figure 237. Then, taking into account that a straight segment is
shorter than any broken line connecting its endpoints, we can write
the following inequalities:

AB + BH < AE + EH;
BC+ CK< BH + HF + FG + GK;

CD < CK+KD.

Add all these inequalities and then subtract from both parts the

auxiliary segments BH and CK. Then,replacing the sums EH+HF

and CK+KD respectively wi'th the segments EF and CD, we obtain
the requiredinequality.

A A B

Figure 237 Figure 238

Remark. If the enclosedbroken line were not convex (Figure 238),
we would not be ableto apply our argument. The enclosed line in
this case can, indeed,turn out to be longer than the enclosingone.

Lemma 2. The perimeter of a convex polygon (ABCD) is
smallerthan theperimeterof any other polygon (MNPQRL)
enclosing the first one (Figure239).

It isrequired to prove that

AB + BC + CD + DA < LM + MN + NP + PQ+ QR + RL.

Extending one of the sides AD of the enclosed convex polygon in
both directions, and applying the previous lemma to the broken lines
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ABCD and ATMNPQRSD, connecting the points A and D, we

obtain the inequality:

AB + BC < AT + TM + MN + NP + PQ + QR + RS + SD.

On the otherhand, sincethe segment ST is shorter than the broken
line$LT, we can write:

TA + AD + DS < TL+ LS.
Add the two inequalities and subtract the auxiliary segmentsAT

and DS from both parts. Then, replacing the sumsTL+ TM and

L$ + RS respectively with the segmentsLM and LR, we obtain the
required inequality.

N P

Figure 239 Figure 240

232. Definition of circumference. Inscribeinto a given circle

(Figure 240) a regular polygon, e.g. a hexagon, and mark on any
Iine MAr (Figure 241) the segmentOP1congruent to the perimeter

of this polygon? Now doublethe number of sides of the inscribed
polygon, i.e. replacethe hexagonwith the regular 12-gon, find its
perimeter and mark it on the sameline MN from the same point
O. We obtain another segment OP2, greater than OP1 Sinceeach
sideofthe hexagon is now replaced with a broken line (consisting
of two sides of'the 12-gon), which is longer than the straight line.
Now double the number of sides of the 12-gon,.i.e. take the regular

24\177gon (not shown in Figure 240), find its perimeter, and markit on
the line MAr from the same point O. We then obtain the segment

OP3, which will be greaterthan OP2 (for the same reason that OP2
is greater than OPt).

\177'One may choose a unit of length and think of MN as e\177number line.
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Imagine now that this process of doubling the number of sidesof
regular polygons and marking their perimeters on a line is contin-
ued indefinitely. Then we obtain an infinite sequence of perimeters
OP1, OP2,OP3,..., which increases. However this increasing se-
quence is bounded,sinceperimeters of all inscribed convex polygons
are smaller, accordingto Lemma 2, than the perimeter of any cir-
cumscribedpolygon (as enclosing the inscribed ones). Therefore our
increasingsequenceofperimeters of inscribed regular polygons has a
certain limit (\365229). This limit (shown in Figure 241 as the segment
OP) is taken for the circumference. Thus, we define the circum-
ferenceof a circleas the limit to which the perimeter of a regular
polygon inscribed into the circle tends as the number of'its vertices
is doubled indefinitely.

I [ I [ I

o Pj P2P3P

Figure 241

Remark. It is possibleto prove (although we omit the proof)
that this limit doesnot depend on the regular polygon the doubling
procedure beginswith. Moreover, it is possible to prove that even
if the inscribed polygons are not regular, still their perimeters tend
to the very same limit as the perimeters of the regularones,if only

their sides decrease indefinitely (and therefore the number of their

sides indefinitely increases), no matter how this is achieved: by the

doubling procedure we were using for regular polygons, or by any

other rule. Thus, for any circle there exists a unique limit to which

perimeters of inscribed polygons tend when all their sidesdecrease

indefinitely, and this limit is taken for the circumference.

Similarly, the arc length of any arc AB (Figure 242) is defined
as the limitto which the perimeter of a broken line, inscribed into the
arc and connecting its endpoints A and B, tends whenthe sidesof
the broken line decrease indefinitely (e.g. by following the doubling
procedure).

233.'Propertiesof arc length. From the deftnit'ion of arc
length,we conclude:

(1) Congruent arcs (and congruent circles) have equalarc length,

because the regular polygons inscribed into them, can be chosen

congruent to each other.

(2) The arc length of the sum of arcsis equal to the sum of their
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arc lengths.

Indeed, if s is the sumof two arcs s' and s\", then the broken line
inscribed-intothe arc s can be chosen consisting. of two broken lines:
oneinscribed into s', the other into. s\". Then the limit to which the

perimeter of such a broken line inscribedinto s tends,as the sides of

it indefinitely decrease, will be equal to the sum of the limits to which
the perimeters of the brokenlinesinscribed into s' and s\" tend.

Figure 242 Figure 243

(3) The arc length of any arc (ACB,Figure242)is greater than

the length of the chord AB connectingits endpoints, and more gener-

ally, than the perimeter of any convex broken line inscribed into the
arc and connectingits endpoints.

Indeed,by doubling the number of sides of the brokenline and
markingthe perimeterson a number line we obtain an infinite se-
quence, which tends to the arc length, and is increasing. Therefore
the arc length is greater than any Of the terms of the sequence(in
particular, than the first one of. them, which is 'the length of the

chord).

(4) The arc length is smaller than the perimeter of any broken
line circumscribedabout the arc and .connecting its endpoints.

Indeed, the length L of the arc ACB (Figure 242)is the limit of

the perimeters of regular broken linesACB,ADCEB,etc.inscribed

into the arc and obtained by the methodof doubling.Eachofthese
broken lines is convex and is enclosed by any circumscribed broken

line AC'D'B connecting the endpoints of the arc. Thus,by Lemma

1, the perimeters of the inscribed brokenlinesare smaller than the

perimeter P of the circumscribed brokenline, and therefore their

limit L cannot exceed the perimeterP aswell, i.e. L _\177P. In fact the
same inequality will remain true if we replace the broken lineAC'D'B
with a shorter broken line still enclosing the disk segmentACB. It
isshown in Figure 243 how to construct such a shorterbroken line

by cutting the corner near one of the vertices(i.e.replacing the part
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ACB betweentwo consecutive tangency points by the shorter broken
lineAMNB). Therefore the arc length L is in fact strictly smaller
than the perimeter P of the circumscribed broken line,i.e.L \177 P.

234. The number \177. The ratio of the circumference to
the diameter is thesamenumber for all circles.

Indeed, consider two circles:oneof radius R, the other of radius
r. Denote the circumferenceof the first circle C, and the second c.
Inscribeintoeachofthem a regular n-gon and denote Pn and Pn the

respective perimeters. Due to similarity of regul\177ar polygons with the

same number of sides, we have (see \365220):

Pn._ Pn. (,)
2R 2r

When the numbern of sidesdoublesindefinitely, the perimeters P\177

tend to the circumference C of the first circle, and the perimeters

Pn to the circumferencec of the second.Therefore the equality (.)

implies: '
\337C c

2R 2r

This ratio of circumferenceto diameter,the same for all circles,

is denoted by the Greekletter\177. 3 Thus we can write the following
formula for circumference:

C = 2R.\177, or C = 2\177rR.

It is known that the number \177ris irrational and ther\177 o\177re cannot

be expressed precisely by a fraction. However one can find rational
approximations of

The following simple approximation of \177, found by Archimedes

in the 3rd century B.C., is sufficient for many practical purposes:

22 31
\177 \177 7 \177 3.142857142857...

It is slightly greater than \177r, but by no more than 0.002. The Greek
astronomerPtolemy (in about 150 A.D.), and the author of \"Al-

jabra,\" al-Khwarizmi of Baghdad (in about 800 A.D.) found the ap-

proximation \177r\177 3.1416 with the error of less than 0.0001.A Chinese

3The notation \177r,which became standard soon after it was adopted by L. Euler
in 1737, comes from the first letter in the Greek word \177rep\177qSepeta meaning circle.
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mathematicianZu Chongzhi (430-501) discovered that the following
fraction:

355
\177r\177 \177 3.1415929...,

113

approximates \177rfrom above with the remarkable precision of up to
0.0000005.4

235. A method of computation of ,r. To compute approx-

imations to the number ,r, one can use the doubling formula we

derived in \365224. For simplicity, take the radius R of a regularn-gon
equalto 1. Let an denote the side of the n-gon, and q\177 = nan/2 its
semi-perimeter, which tends thereforeto \177ras the number of sides is
doubled indefinitely. According to the doubling formula,

a\177n = 2- 2V/1- a\177n4

We can begin the computation with a6 = 1 (i.e. q6 = 3). Then the
doubling formula yields (see \365224):

a\1772 = 2- \177 = 0.26794919...

Using the doubling formula we then consecutively compute:

Suppose that we stop the doubling at_the 96-gon, and take its semi-
perimeter q96/2= 48a96 for an approximate value of \177r. Performing

the computation, we find:

\177'\177 q96 = 3.1410319...

In order to judge the precisionof this approximation, let us also

compute the semi-perimeter Q96 of the 96-goncircumscribedabout

the circle of the unit radius. Applying the formula for the sideof
circumscribed regular polygons found in \365220, and setting R = i we
get:

a96 q96

b96 = V/1 _ a\177s/4, i.e. Q96 = 48b9a - V/1_ a\177a14

4In 1883, an Englishman W. Shanks published his computation of \177rwith 707
decimal places. It held the record until 1945, when the first 2000 placeswere

found using computers, and it turned out that Shanks had made a mistake which

ruined his results starting with the 528th decimal place.
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Substituting numerical values of a96 and q96 we find:

Q96 = 3.1427.146...

A semicircle is greater than the semi-perimeterof the inscribed reg-

ular 96-gon, but smaller than the semi-perimeterof the circum-

scribed regular 96-gon: q96 \177 7r \177 Q96. Thlls we can conclude that
3.141 \177 w \177 3.143. In particular, we find the decimal approximation
to \177 from below true to two decimal places:

3.14.

Morepreciseapproximations of \177r can be found by using the same
methodof doubling for computing q19\177 and Q19\177, q384 and Q384, and
so on. ]For instance, to obtain the approximation from below

vr \177 3.141592...

true to 6 decimal places, i.e. with the precision of up to 0.000001, it
suiTicesto computesemi-perimeters of regular inscribed and circum-
scribed polygonswith 6144sides(which are obtained from hexagons

by 10 doublings).
236. Radian. In some problems, the number inverse to \177occurs:

1
= 0.3183098...

Problem. Determine the .numberof degreesin an arc whose arc

length is equal \177o the radius.

The formula 2wR for circumferenceof a circleofradius R means

that the arc length of one degreeis equal to 2\177R/360 = \177R/180.
Therefore an arc of n degrees has the arc length

7\177Rn

180

When the arc length is equal to the radius, i.e s = R, we obtain the
equationi = \177rn/180, from which we find:

1
n \370= -180 \370-\177 180 \370. 0.3183098 \177 57.295764 \370-\177 57\37017\17745 \177.

An arc whose arc length is equal to the radiusis called a radian.

Radians are often used (instead of circularand angular degrees) as

'u\177nits for measuring arcs and corresponding central angles. For in-
stance,the full angle contains 360 \370or 2\177r radians.
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EXERCISES

J97. Compute the length of the arcs of the unit radius subtended

by the chords: (a) vf\177 units long; (b) v/\177 units long.

J98. Compute the radian measure of the anglescontaining:60\370,45 \370,

12 \370.

\17799. Express in radians the sum of the interioranglesof an n-gon.
500.Express in radians the exterior and interior angles of a regular
n-gon.
501.How many degrees are contained in the angle whoseradian

measure is: a/4, /97

502. Compute the valuesof the trigonometricfunctions sin a, cos a,
tan a, and cot a for the angles a = \177rt6, \177rt4, \177r/3, \177r/2, 2\177r13, 3\177rI4,

5\177r/6, \177rradians.

503.* Prove that sina < a < tan a for 0 < a < \177r/2, where a

denotes the radian measure of the angle.
50\177. Prove that in two circles, the ratio of centralanglescorrespond-

ing to two arcs of the same arc lengthis equal to the inverse ratio of
the radii.

505. Two tangent lines at the endpoints of a given are containing

120 \370are drawn, and a circle is inscribed into the figure bounded by

these tangent lines and the arc. Provethat the circumferenceofthis
circle is equal to the arc length of the given arc.

506. In a circle,the aresubtended by a chord of lenggh a is congruent
to twice the are subtended by a chord of length b. Computethe radius
of the circle. -
'507.Prove that the side an of a \177egular n-gon tends to 0 as the
number of sidesincreasesindefinitely.

508. On the diameter of a given semicircle,insidethe disksegment
boundedby the diameter and the semicircle, two congruent semicir-
clestangent to each other are constructed. Into the part ofthe plane
bounded by the three semicircles, a disk is inscribed.Provethat the
ratioofthe diameter of this disk to the diameter of the constructed
semicirclesis equal to 2:3.

509. How small will the errorbe if instead of semi-circumference we

take the sum of the sideof an inscribed equilateral triangle. and the
side of an inscribedsquare?
510.Estimate the length of the Earth's equator, taking the Earth's
radius to be 6400 kin.

511. Estimate the lengthof 1\370of the Earth's equator.
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512.A round rope, which is 1 m longer than the Earth'sequator, is

stretched around the equator at a constantheight above the Earth's

surface. Can a cat squeezeitselfbetweenthe ropeand the Earth's

surface?

515.\177Suppose now that the sameropeis stretched around the equa-

tor and pulled up at onepoint as high as possible above the Earth's
surface. Can an elephantpassunder the rope?



Chapter 5

AREAS

1 Areas of polygons

237.The concept of area. We all have some idea about the

quantity called area, from everyday life. For example,the harvest a

farmer expects to collect from a pieceof land dependsnot somuch

on the shape of the piece, but only on the size of land surface that
the farmercultivates.Likewise, to determine the amount of paint
needed to paint a surface, it suffices to know the overall sizeof the
surfaceratherthan the exact shape of it.

We will establish heremoreprecisely the concept of area of geo-
metric figures,and developmethodsfor its computation.

238. Main assumptions about-areas. We will assume that

the area of a geometricfigure is a quantity, expressed by positive
numbers, and is well-defined for every polygon. We further assume
that the areasof figures possess the following properties:

(1) Congruent figures have equal areas. Figures of equal area are
sometimescalledequivalent.Thus, according to this property of
areas, congruent figuresare equivalent. The converse can be false:
equivalent figuresare not always congruent.

(2) \177rf a given figure is partitioned into several parts (M, N, P,
Figure 244), then the number expressing the area of the wholefigure
is equal to the sum of the numbers ezpressingthe areasof the parts.

This property Of areas is called additivity. It implies,that the area

of any polygon is greater than the areaof any other polygon enclosed

by it. Indeed, the differencebetweenthe areasof the enclosing and

enclosed polygons is positive since it representsthe areaofa figure

(namely of the remaining part of the enclosingpolygon, which can

209
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always be partitioned into several polygons).

(3) The square, whose side is a unit of length, is taken for the
unit of area, i.e. the number expressing the area of such a square is
set to 1. Of course, which squares have unit areas depends on the
unit of length. When the unit of length is taken to be,say, i meter

(centimeter, foot, inch, etc.), the unit square of the corresponding
size is said to have the area of 1 square meter (respectively square
centimeter, square foot, squareinch, etc.),which is abbreviated as

1 m 2 (respectively cra2,ft2?in2,etc.)

Figure 244 Figure 245

239. Mensuration Of areas. Area of somesimplefigures can

be measured by counting the number of times the unit square fits

into the figure. For example, let the figure in question be drawn

on grid paper (Figure245) made of unit squares, and suppose that
the boundary of the given figure is a closed brokenline whose sides

coincide with the edges of the grid. Then the whole number of unit

square s lying inside the figure gives the exact measure of the area.
In general,measuring axeas is done not by direct counting of unit

squaresor their parts fitting into the measured figure, but indirectly,
by means of measuring certain linear sizes of the figure, as it will be

explained soon.

240. Base and altitude. Letus agreetocallone of the sides of
a triangle or parallelogramthe base ofthesefigures, and a perpen-

dicular dropped to this side from the vertex of the triangle, or from

any point of the opposite side of the parallelogram,the altitude.
In a rectangle, the side perpendicular to the base can be taken

for the altitude.

In a trapezoid, both parallel sidesarecalled bases, and a common
perpendicular between them, an altitude.

-- The base and the altitude of a rectangleare called its dimen-

sions.
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241. Theorem. The area of a rectangle is the productof
its dimensions.

This brief formulation should be understood-in the following w\177y:

the number expressing the area of a rectanglein certain square units

is equal to the productof the numbers expressing the length of the
base and the altitudeof the rectangle in' the corresponding linear
units.

In the proofofthis theorem, three cases can occur:

(i) The lengths of the base and the altitude (measured by the
same unit) are expressedby whole numbers.

Let a given rectangle (Figure 246)have the base equal to b linear
units, and the altitudeto h such units. Divide the base and the
altitude into respectively b and h congruent parts,' and draw through
the division points two series of lines parallel respectively to the
altitude and the base. Mutual intersections of these linespartition
the rectangle into quadrilaterals. In fact each of these quadrilaterals
(e.g.K) iscongruent to the unit square. (Indeed, since the sidesof
K are parallel to the sides of the rectangle, then all anglesof K are

right; and the lengths of the sides of K are equal to the distances

between the parallel lines, i.e. to the same linear unit.) Thus the
rectangle is partitionedintosquaresofunit area each, and it remains
to find the number of these squares. Obviously, the seriesof lines
parallel to the base divides the rectangle into as many rectangular

strips as there are linear units in the altitude,i.e. intoh congruent

strips. Likewise, the series of lines parallelto the altitude divides

each of the strips into as many unit squares as there are linear units
in the base;i.e.into b such squares.- Therefore the total number of
squaresis b x h. Thus

the area of a rectangle -- bh,

i.e. it is equal to the product of the base and the altitude.

(ii) The length of the base and the altitude (measured by the
same unit) are expressedby fractions.'

Suppose, for example, that in a given rectangle:
i 7

base - 3- - - linear units,
2 2
3 23

altitude - 4- - of the same linear units.
5 5

Bringing the fractionsto a common denominator, we obtain:

35 46

base =\177-6; altitude - 10
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Let us take the \177th part of the linear unit for a new unit of length.
Thenwe can say that the base contains 35suchunits, and the altitude

46. Thus, by the result of case (i), the area of the rectangle is equal
to 35x 46 square units corresponding to the new unit of length. But
this square unit is equivalent to the y\1770th part of the square unit
corresponding to the originalunit of length. Therefore the area of
the rectangle,expressedin the original square units, is equal to

35X46 35 46 (1) (\177)

- x = 3 x 4
100 10 10 \177 '

(iii) The base and the altitude (or only one of these dimensions)
are incommensurable with the unit of length, and therefore are ex-
pressed by irrational numbers.

D

D'

b A B' B B\"

Figure 246 Figure 247

For all practical purposesit suffices to use approximate values of
the area computedwith any desired precision. It is possible however
to show that in this case too, the precise value of the area of the
rectangle is equal to the product of its dimensions.

Indeed,let the lengths of the base AB and the altitude AD of a

rectangle AB\177'D (Figure 247) be expressedby real numbers c\177and \177.

Let us find the approximate vatues of c\177and/\177 with the precision of
up to 1/n. Forthis,mark on the base AB the 1\177th part of the linear
unit as many timesaspossible.Suppose,that marking m such parts,

we obtain a segmentAB'< AB (or AB \177= AB), and marking ra + 1
such parts, we obtain a segment AB \177'> AB. Then the fractions m

and m+l will be the approximations of c\177respectively from belown
and from above, with the requiredprecision.Furthermore, suppose

\177h1;hat by marking on AD the \177t part of the unit p and p + 1 times,

we obtain the segments respectively AD \177< AD (or AD \177= AD) and
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AD\" > AD, and thus find the approximations \177 </\177 < P+\177 to the

length 1\177of the altitude. Construct two auxiliary rectangles AB'C'D\177

and AB\177CWD'\177. The dimensions of each of them are expressedby

rational numbers. Therefore, by case (it): the area of AB\177C\177D \177is

equal to \177 x P-, and the area of AB\"C\177D \177is equal to ra+l X p+l

Since ABCD encloses AB\177C\177D \177and is enclosed' by AB\177C\"D\177, we

have:

area of AB'C\177D' < areaofABCD< area of AB\"C\"D\",

m+l p+lm pi.e. -- x -- < area of ABCD < x

This inequality holds true for any value of n, i.e. with whatever

precision we choose to approximate \177 and 1\177. Let us first take n = 10,
then n ----' 100, then n = 1000, etc. We will obtain the fractions mn
and np- which provide better and better decimal approximationsof the

ra+l p+l
numbers a and/\177 from below, and the fractions \177- and which
providebetter and better approximations of the numbers
from above. It is not hard to see that their products become better
and betterapproximations, from below and from above, of the same
infinite decimal fraction. \177The latter decimal fraction represents the
real numbercalledthe product of the real numbers c\177and/\177. Thus,

we conclude that the area of ABCD is equal to

242. Theorem. The area of a parallelogram (ABCD,Figure

248) is equal to the product of the base and the altitude.
E E C

h h

A b D A b D

Figure 248

\177Indeed, the difference

ra+lp+l rap mp+ra+p+l-rap
T\177 \177 1\177n 1l2

tends to zero as n increasesindefinitely.

1 (_\177+p+l) AB'+AD\"
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On the baseAD, construct the rectangle AE\234D, whose side EF
extendsthe sideBCofthe parallelogram, and prove (in both cases
shown in Figure248),that

area of ABCD = area of AEFD.

Namely, combining the parallelogram with the triangle AEB, and
the rectanglewith the triangle DFC, we obtain the same trapezoid
AECD. The triangles AEB and D\234C are congruent (by the SAS-

test, since AE = DF, AB = DC, and ZEAB =/_FDC), they are

equivalent, and therefore the parallelogram and the rectanglehave

to be equivalent as well. But the area of AEFD is equal to bh,

and hence the area of ABCD is equalto bh as well, where b can be
considered as the base,and h as the altitude of the parallelogram.

243. Theorem.Theareaofa triangle(ABC, Figure 249) is

equal to half the product of the baseandthealtitude.
B D B

K L

A b C A b C

Figure 249 Figure 250

Drawing BD[[AC and CDI[AB, we obtain the parallelogram
ABDCwhose area, by the previous theorem, is equal to the product

of the base and the altitude. But the parallelogramconsistsof two

congruent triangles, one of which is AABC. Thus

areaoflkABC= --bh

2

Remark. Figure 250 shows how to rearrangepartsofa triangle

ABC to form the rectangle AKLC with the samebase b as the

triangle, and the altitude h/2 congruentto a half of the altitude of
the triangle.

-- 244. \275oro]_lar\361es. (1) Triangles with congruent bases and con-
gruent altitudes are equivalent.
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For example, if we will move the vertexB ofthe triangle ABC

(Figure 251) along the line parallelto the base AC, leaving the base
unchanged, then the areaof the triangle will remain constant.

(2) The area of a right triangleis equal to half the product of its
legs,becauseoneofthe legscan be taken for the base, the other for

the altitude.

B

A C

D

Figure 251 Figure 252

(3) The area of a thombus is equal to half the product of its diago-
nals.Indeed,if ABCD (Figure 252) is a thombus, then its diagonals

are perpendicular. Therefore

area of Z\177ABC = I\177AC . OB, area of Z\177ADC = \177AC .

of +

A

B C

D

Figure 253

B C

A D

Figure 254

245. Theorem. The area of a trapezoidis equalto the
product of the altitude and the semi-sum of the bases.

Drawing in the trapezoid ABCD (Figure 253) the diagonalAC,
we can consider the area of the trapezoid as the sumofareasof the

triangles ACD and BAC. Therefore

1\177 \177 \177(AD + BC). n.are\177ofABCD= AD . h + \177BC. h = \177
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I,

246. Corollary. If 3//N (Figure 254) is the midlineofthe trape-

zoid ABCD, then (as it is known from \3659?) it is congruent to the
semi-sum of the bases.Therefore

area of ABCD = MN. h,

i.e. the area of a trapezoidis equal to the product of the midline with

the altitude.

This can also be seen directly from Figure254.
247.Remark. In order to find the area of an arbitrary polygon,

onecanpartition it into triangles, compute the area of each triangle,
and add the results.

EXERCISES

Prove theorems:

51\177. In a parallelogram, the distances from any point of a diagonal
to two adjacent sides are inversely proportional to these sides.
515. A convex quadrilateraT each of whose diagonals divides it into
two equivalent triangles, is a parallelogram.

516. In a trapezoidpartitioned into four triangles by the diagonals,
the trianglesadjacenttothe lateral sides are equivalent.

517. The area of a trapezoidis equal to the product of one of the
lateral sidesand the perpendicular, dropped to this side from the

midpoint of the other lateral side.
518. A triangle with the altitudes 12, 15, and 20 craisright.
519.The parallelogram obtained from intersection of the lines con-
nectingeachvertex of a given parallelogram with the midpoint of
the nextsideis equivalent tO 1/5th of the given parallelogram.
520. \177If the medians of one triangle are t\177aken for the sides of another,
then the area of the latter triangle is equal to 3/4 of the area of the
formerone.
521.xIna quadrilateral ABCD, through the midpoint of the diago-
nal BD, the line parallel to the diagonal AC is drawn. Supposethat

this line intersects the side AD at a pointE. Prove that the line CE
bisects the area of the quadrilateral.

Compu!:a!:ionproblems
522.In a square with-the side a,' midpoints of adjacent sides are
connected to each other and to the opposite vertex. Computethe

area of the triangle thus formed.
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5\177'3. Two equilateral triangles are inscribed into a circleof radiusR
in such a way that each of the sidesis divided by the intersections

with the sides of the other triangleinto 3 congruent parts. Compute
the area of the commonpart ofthesetriangles.
5\177J. Compute the area of a right triangle, if the bisector of an acute
angle divides the oppositeleginto segments of lengths 4 and 5.

5\177'5. Compute the area of a trapezoid with angles60\370and 90 \370,given:

(a) both bases, (b) one base and the lateralsideperpendicular to the

bases, (c) one base and the otherlateral side.

5\177'6. Given the bases and the altitude of a trapezoid, compute the

altitude of the triangle formed by the extensions of the lateral sides
up to the pointof their intersection.

5\1777.* Compute the area of an isoscelestrapezoidwith perpendicular

diagonals, if the midline is given.
5\177'8. \177 Compute the ratio of the area of a triangle to the area of

another triangle whose sides are congruent to the medians of the

former triangle.

5\1779. Into a triangle of unit area, another triangle, formedby the

midlines of the first triangle, is inscribed.Intothe second triangle, a

third triangle, formed by the midlinesofthe secondone,isinscribed.
Into the third triangle, a fourth one is inscribedin the same fashion,

and so on indefinitely.Find the limit of the sum of the areas of these

triangles.

Hint: First compute the sum of the areasafter finitely many steps.

Construction problems

50\3700. Through a vertex of a triangle, draw two lines which divide the
area in a given proportionra: \177: p.

531. Bisect the area of a triangleby a line passing through a given
point on its side.
552.Find a point inside a triangle such that the linesconnectingthe
pointwith the vertices divide the area of the triangle (a) into three

equal parts; (b) in a given proportion ra:
555. Divide a parallelogram into three equivalent parts by lines
drawn from one of its vertices.

55J. Divide the areaofa parallelogram in a given proportion
by a line passingthrough a given point.

Hint: Divide a midline of the parallelogram in the given proportion,
and connectthe division point with the given one.
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2 Several formulas for areas of triangles

248.Theorem. The area of any circumscribed polygon is
equal to the productof the semi-perimeterof the polygon
and the radius.

Connecting the centerO (Figure 255) with all vertices of the
circumscribed polygon, we partitionit into triangles,in which sides

of the polygon can be taken for the bases, and radii for the altitudes.
If r denotesthe radius, then

area of/\177AOB- AB. r, area of ABOC- \177BC.r,etc.

1 (AB + BC + CD + DE q- EF) \337r - qr,i.e. area of ABCDE - \177

where \177the letter q denotes the semi-perimeter of the polygon.
B A

Figure 255 Figure 256

c

Corollaries.' (1) The areaofa regular polygon is equal to the
product of the semi-perimeter and the apothem,becauseany regular

polygon can be considered as circumscribedabout a circle the radius

of which is the apothem of the polygon.

(2) The area $ of any triangle is equal to the product of its semi-
perimeter q and the radius r of the inscribed circle:

$- qr.
249.Problem. To compute the area $ of a triangle, given the

lengths a, b, and c of its sides.
Let ha denote the \177lt\177tude of AABC (Figure 256) dropped to its

sidea. Then

1

$ = \177ah\177.
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In orderto compute the altitude ha, we use the relation (\365190)'

b 2 = a 2 + c2 _ 2ac \177,

and determine from it

a2 + c2 _ b 2
C! _--

2a

From the right.triangleADB,we find:

ha -- c2 - 2a i \177/4a2c 2 _ (a \177+ cS _ b\177)2 '
2a

i.e.

Thus

Therefore

Let q = (a+ b + c)/2 denote the semi-perimeter of the triangle.Then

a + c- b = (a + b + c) - 2b = 2q- 2b = 2(q- b),

and similarly

a+b-c=2(q-c), b+c-a=2(q-a).

1

S -- \177v/2q \3372(q - a). 2(q - b)-2(q- c),

$ = x/q(q - a)(q - b)(q- c).
The last expression is known as I-Ieron's formula after Heron of
Alexandria who lived in the 1st century A.D.

2Since any side of a triangle is smaller than the sum of the other two sides,

the factors under the square root sign are positive.

Transform the expression under the squarerootsign:

(2\177)\177 _ (\1772 + \177 _ \177)\177 = (2\177o + \1772 + \177 _ b\177)(2\177_ a \177_ \177 + b\177)

[(a 2 q-c s q- 2ac)- b2][b 2 -,(a 2 q- c2- 2ac)]

[(aq- c) 2 - b2][b\177- (a - c)2]

(\177 + \177+ b)(a + o - \177)(\177+ a - \177)(b - \177+ \177).
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Example. The area of an equilateraltrianglewith the side a is
given by the formula

$=\177.3.; a a a_V\177a2 '2 2 2 4

250. The law of sines.3
Theorem. The area of a triangle is equal to half theprod-

uctof any two of its sides and the sine of the anglebetween

them.

Indeed, the altitude ha (Figure 257)of AABC can be expressed

as ha - b sin C', and therefore the area S of the triangleis given by

the formula

S ----\177ab sin C.

The following corollary is called the law of sines.
Corollary.Sides of a triangle are proportional to the sines of

the anglesoppositeto them:

a b c

sin A - sin B -- sinC;'
Indeed, from the theorem, we compute sin C - 2S/ab,and find the
ratio

c abc

sin C 2S'
It follows that the ratio is the same for all three sides of the triangle.

A
C

Figure 257 Figure 258

The following theorem providesanotherproofofthe law of sines.

3See also Exercisesin Section 7 of Chapter 3.
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Theorem. Any side of a triangle is equal to theproduct
of the sine of the opposite angle and the diameter of the
circumscribedcircle.

Let O (Figure 258) be the center of the circlecircumscribedabout
AABC, and OD the perpendicular bisector of the side AB. The
central angles AOD and BOD are congruent to eachother and to

ZC (because they are all measured by a half of the arc ADB). Since
AO = OB = R (where by _R we denote the radius of the circle), then
AD = DB = R sin C, i.e.

c= AB = 2R sin C.

Corollaries. (1) The ratio of any side of a triangle to the sine
of the oppositeangle,is equal to the diameter of the circumscribed
circle:

a b c
- -- - -- = 2R.

sinA sinB sinC

(2) Comparing two expressions for the ratio c/sin C, we obtain
a simpleformulaexpressingthe area S of a triangle through its sides
a, b,c and the radius R of the circumscribed circle:

abcS=
4R

EXERCISES

Prove theorems:

555. The area of any quadrilateral is equal. to half the product of its
diagonalsand the sine of the angle between them.

556. If the axeasoftwo triangles, adjacent to the bases of a trapezoid
and formed by the intersection of the diagonals,areequaltoa2 and b 2

respectively, then the area of the wholetrapezoidisequal to (a+b) 2.

557. The area S of a trianglewith the sides a, b, c and the semi-
perimeterq can be expressed as

S ----(q -- a)ra = (q -- b)rb ---- (q -- C)rc,

where rs, rb, and rc are radii of the exscribed circles tangent to the
sidesa, b, and c respectively.

538. Prove that the radiire, rb, rc, and r of the three exscribed and
oneinscribed circle of a triangle satisfy: 1/re + 1/r\177 + 1/rc = 1/r.
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539. The medians of a given triangledivide it into six triangles, out
of which two adjacent to one side of the given triangle turned out
to have congruent inscribed circles. Prove that the given triangle is
isosceles.
54{0.A line dividing a given triangle into two figures which have
equalareasand congruent perimeters, passes through the incenter.

54{ 1. In a convex equilateral polygon, the sum of distancesfrom an

interior point to the sides or theirextensionsdoesnotdependonthe

point.

5\177{2.* In an equiangular polygon, the sumofdistancesfrom an inte-

rior point to the sides or their extensions is a quantity independent
of the position of the point in the polygon.

54{3.* The sum of the squaresof the distancesfrom a point on a

circle to the verticesof an inscribed equilateral triangle is a quantity
independent of the positionofthe point on the circle.

Computation problems

54{4{.Compute the areaofa regular hexagon with the side a.

54{5. Compute the areaofa regular 12-ton of radius R.

54{6. A disk inscribed into an isoscelestrapezoidtouches a lateral

side at a point dividing it intosegmentsra and \177. Compute the area

of the trapezoid.

54{7.Expressthe radius of the circumscribed circle of a triangle in
terms of two sides of the triangle and the altitude droppedto the
third side.

54{8.

each

lines

Three circles of radii 6, 7, and 8 cmare pairwise tangent to

other. Compute the area of the triangleformed by the three
of centers.

54{9. Expressthe common chord of two intersecting circles in terms
of their radii and the lineof centers.
550.Express the radius of the inscribed circle of a triangle,andeach
ofits exscribed circles, through the sides of the triangle.

551. Expressthe radius of the circumscribed circle of a triangle
through the sides.

552. Ii\177the lengths a, b, c of the sidesof a triangle form an arith-

rn\177tic sequence, then ac = 6_\177r, where _\177 and r are the radii of the
circumscribedand inscribedcircles respectively.



3. Areas of similar \177figures 223

3 Areas of similar figures

251.Theorem. Areas of similar t\177angles or polygons are
proportional to the squaresofhomologoussides.

(i) If ABC and A'B'C' (Figure 259) are two similar triangles,

then their areas are equal to respectivelyah/2 and a\177h\177/2, where a

and a \177are lengths of the homologous sides BC and B\177C \177,and h and

h \177are the homologous altitudes AD and
The altitudesare proportional to the homologous sides: h: h'

a: a\177(since from similarity of the right triangles ADB and A\177D\177B \177,

we have h: h ' - c: c\177-- a: a\177). Therefore

area of ABC ah a h a a
areaofA\177B\177C \177 a\177h \177 a \177 U a \177 a \177

a 2

A A'

c

B a C A E
A' E'

Figure 259 Figure 260

(ii) If ABCDE and A'B'C'D'E' (Figure 260) are two similar
polygons, then it is possible,as we have seen in \365168,to partition
them into respectivelysimilartriangles positioned in the same way.
Let these trianglesbe: AOB and A'O'B', BOC and B'O'C', etc.
Accordingto the result of part (i), we have the following proportions:

areaof AOB
areaofA'O'B' area of B'O'C \177= ; etc.

But from the similarity of the polygons, we have:

A\177B\177 - B\177G\177 = ..., and hence A\177B\177 = B--7---\177\177 =
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Therefore

area ofAOB areaofBOC
area of A'O'B' area of B\177O\177C \177- '\"

From properties of proportions (seeRemarkin \365169), we conclude:

area of AOB + area ofBOC + ... area of AOB

area of AtO\177B \177+ area of B\177O\177C \177+ ... area of A\177O\177B t'

'i.e. area of ABCDE _ AB2

area of A\177B'C\177D\177E\177 (A\177Bt)2 '

Corollary. Areas of regular polygonswith the same number of
sides are proportional to thesquaresoftheirsides,orsquares of their
radii, or squares of their apothems.

252.Problem.To divide a given triangle into m equivalent parts
by lines parallel to one of its sides.

A

B P

Q

C

Figure 261

Suppose, for example, that it is required to divide ,\177ABC (Figure

261) into three equivalent parts by segmentsparalleltoAC. Suppose

that the required segments are DE and FG. The triangles DBE,
FBG, and ABC are similar. Therefore

areaofDBE BE2 area of FBG BG 2- and -
area of ABC BC 2 area of ABC BC2'

But

Therefore

area of DBE 1 area of FBG 2-- and
areaofABC 3 area of ABC \177'

BE 2 1 BC 2 2

BC 2 -- \177 &rid BC--- \177= \365.
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From this, we find:

BE=\177BC.BCandBG=\1772\365BC'BC,

i.e. BE is the geometric mean between BC and \253BC,and BG is
the geometricmean between BC and -\177BC. Therefore the required
construction can be done as follows. Divide BC into 3 congruent

parts at the points M and N. Describe the semicircle on BC as
the diameter.From the points M and N, erect the perpendiculars
MP and NQ. The chords BP and BQ will be the geometricmeans

needed: the first one between the diameter BC and its third part

BM, the second one betweenBC and BE, i.e. between BC and
-\177BC. It remains to mark these chords on BC starting from the
3

point B to obtain the required points E and G.
Onecan similarly divide the triangle into any number of equiva-

lent parts.

EXERCISES

Computation problems

553. A line parallel to the baseof a triangle divides its area in the
proportion 4 ' 5 Counting from the vertex. In what proportion does
it divide the lateralsides?
55\177. Each median of a triangle is divided in the proportion3 ' I
counting from the vertex. Compute the. ratio of the area of the

-trianglewith the vertices at the division points, to the area of the

original triangle.

555.* Among \177ectangles of a fixed area, find the onewith the minimal
perimeter.

Constructionproblems
556.Divide a parallelogram into three equivalent parts by linespar-
allelto one of the diagonals.

557. Divide the area of a trianglein the extreme and mean ratio by
a line parallelto the base.

Hint: Apply the algebraic method.
555. \177'Divide a triangle into three equivalent parts by lines perpen-

dicular to the base.
559. Bisectthe areaofa trapezoid by a line parallel to the bases.
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560. On a given base, construct a rectangleequivalent to a given
one.

561. Construct a squareequivalent to 2/3 of the given one.
56H. Transforma given square into an equivalent rectangle with a
given sum (ordifference) of two adjacent sides.

565. Given two triangles, constructa third one, similar to the first,
and equivalent to the second.
56J.Transform a given triangle into an equivalent equilateral one.
Hint: Apply the algebraic method.

565. Into a given disk,inscribea rectangle of a given area a 2.
566. Into a given triangle, inscribe a rectangle of a given' area $.

4 Areas of disks and sectors

253. Lemma. Under unlimited doubling of the number of
sides of an inscribedregu\177lar polygon, its side decreases in-
definitely.

Let n be \177he number of sides of an inscribed regular polygon, and
p its perimeter. Then the length of one of its sidesis expressedby

the ratio p/n. Under unlimited doubling of the numberof sidesof
the polygon, the denominator n of this ratio will increase indefinitely,

and the numerator p willalsoincrease,though not iridefinitely (since

the perimeter of any convexinscribedpolygon remains smaller than

the perimeter P of any fixedcircumscribedpolygon). A ratio, whose.

numerator remains bounded, and denominatorincreasesindefinitely,

tends to zero. Therefore the side of the inscribedregularpolygon

indefinitely decreases as n indefinitely increases.

254. Corollary. Let AB (Figure 262) be a side of an inscribed
regularpolygon, OA the radius: and OC the apothem. 'From/kAOC
we find:

OA-OC ( AC, i.e. OA-OC ( \177AB.

Since the side of the regular polygon, as we have just proved, de-
creases indefinitely when the number of sides is doubled an unlimited
number of times,then the sameis true for the difference OA - OC.
Therefore,under unlimited doubling of the number of sides of the in-
scribedregular polygon, the length of the apothem tends to the radius.

-- 255. The area of a disk. Into a disk,whose radius we.denote

R, inscribe any regular polygon. Let the areaofthis polygon be $,
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semi-perimeter q, and apothem r. We have seen in \365248 that

S\177qr.

Imagine now that the number of sides of this polygon is doubled

indefinitely. Then the semi-perimeter q and the apothemr (and

hence the area $) will increase. The semi-perimeter will tend to
the limit C/2 equal to the semi-circumference of the circle,and the
apothemr will tend to the limit equal to the radius /\177. It follows

that the area of the polygon will tend to the limit equal to \253C \337/\177.

A B

Figure 262 Figure 263

Definition. The limit, to which the area of a regularpolygon

inscribed into a given disk tends as the numberofsidesofthe polygon

is doubled indefinitely, is taken for the area of the disk.

Let us denote by A the area of the disk. We conclude therefore,
that

1

i.e. the areaof a disk is equal to the product of the semi-
circumferenceandtheradius.

Since C - 2\177R, then

1

A = \1772\177R. R = \177R 2,

i.e. the area of a disk of radius R is equal to the square of
the radius multiplied by the ratio of the circumference to
the diameter.

Corollary. Areas of disks are proportional to the squares of
their radi'ior diameters.
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JI

II

Indeed, if A and A' denote areas of two disks of radii R and R'
respectively,then A = =/\177' and A' = \177r(R') 2. Therefore

A \177rR \177' R 2 4R 2 (2R) \177'

256. Area of a sector. The area of a sectoris equal to

half the product of its arc length and the radius.
Let the arc Arab (Figure 263) of a sectorAOB containn\370. Ob-

viously, the area of the sector, whosearc contains 1 \370, is equal to

1/360th part of the area of the disk,i.e. it is equal to \177rR=/360.

Therefore the area $ of the sector,whose arc contains n \370, is equal to

\177R2n 1 \177rRn
$=--= -R.

360 2 180

The fraction \177Rn/180 expresses the arc length of the arc Arab
(\365236). If s denotes the arc length, then

1

Remark.In ordertofind the area of the disk segment, bounded by

an arc Arab (Figure 263) and the chordAB, it sut\177ces to compute

separately the area of the sector A\270B and AA\270B, and then to
subtract the latter from the former one.

257. Problem. To compute.the area of the disk whose circum-

ference is equal to 2 cm.
First, we find the radius R from the equation

1
2\177rR = 2 cra, i.e.R = - = 0.3183...

Then we find the area of the disk:

A = \177R 2 = vt. = - = 0.3183... cm 2.

258. Problem. To construct the square equivalent to a given
disk.

This is the famous problemof squaring the circle.In fact it

cannot be solved by means of straightedgeand compass.Ifa square

with the side x is equivalent to the diskof radiusR, then

x 2-\177rR 2, i.e.
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Let us assume for simplicity that R = 1. If the square with the

side z = v/\177 could be constructed, then, according to the resultsof
\365213, the number v/\177 would have been expressible through integers
by meansof arithmeticoperationsand square roots. However, in
1882 a German mathematicianFerdinandLindemann proved that \177

is transcendental. By definition, this means that it is not asolution
of any polynomial equation with integer coefficients. In particular,
this impliesthat it cannot be obtained from integers by arithmetic
operationsand extractions of roots.

For the same reason, theproblemofconstructing a segment whose

length would be equal to the circumference of a given circle, also
cannot be solved by means of straightedge and compass.

EXERCISES

567. In a disk with the center \270, a chord AB is drawn, and another
disk is constructedon the line \270A as a diameter. Prove that the
areasof two disk segments cut off by the chord AB from the two

disks have the ratio 4: 1.
568. Constructa disk equivalent to a given ring (i.e. the figure
boundedby two concentric circles).

569. Divide a disk into 2, 3, etc. equivalent parts by concentric
circles.

570. Compute the area of the disk segment cut off by a side a of
an inscribedintothe disk:(a) equilateral triangle, (b) square, (c)
regular hexagon. _

.57!. Compute the ratio of the areaofa sectorintercepting a 60 \370arc

to the area of the disk inscribedinto this sector.
572.Compute the area of \177he figure bounded by three pairwise tan-
gent congruentcirclesof radius R and situated in the exterior of the
circles.
573. The common chord of two disks subtends the arcs of 60\370and

120 \370respectively. Compute the ratio of the areas of these disks.
57J. Compute the area of a ring if the chordof the outerboundary

circle tangent to the inner boundary circle has length a.

575. Prove that if the diameter of a semicircleis divided into two

arbitrary segments, and another semicircle is describedon each of

the segments as the diameter, then the figure bounded by the three
semicircles is equivalent to the disk whose diameter is congruent to
the perpendicular to the diameterofthe original semicircle erected

at the division point.
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5 The Pythagorean theorem revisited

259. Theorem.The areas of squaresconstructed on the

legs of a right triangle add up to the areaof the square

constructed on its hypotenuse.
This propositionis yet another form of the Pythagorean theo-

rem, which we proved in \365188: the square of the number measuring
the length of the .hypotenuseis equal to the sum of the squares of
the numbers measuringthe'legs. Indeed, the square of the number
measuring the length of a segment is the number measuring the area
of the square constructed on this segment.

There are many other ways to prove the Pythagorean theorem.
Euclid's proof. Let ABe (Figure 264) be a right triangle,

and BDEA,AFGC,and BCKtt squares constructed on its legs
and the hypotenuse. It is required to prove that the areasofthe first

two squares add up to the area of the third one.
E

D

G

B

H M K

Figure 264 Figure 265

Draw AM _L BC. Then the square BCKH is divided into two

rectangles. Let us prove that the rectangle BLMH is equivalent to

the square BDEA, and the rectangle LCKM is equivalent to the

square AFGC. For this, consider two triangles shaded in Figure
264. These triangles are congruent, since AABH is obtained from
ADBC by clockwiserotationabout the point B through the angle
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of 90 \370. Indeed, rotating this way the segment BD, which is a side
of the square BDEA, we obtain another side BA of this square,and

rotating the segment BC, which is a sideof the squareBCKH,we

obtain BH. Thus/kABH and/kDBC are equivalent. On the other
hand, /kDBC has the base DB, and the altitude congruent to BA

(since ACIIDB ). Therefore /kDBC is equivalent to a half of the
square BDEA. Likewise,/kABHhasthe baseBH,and the altitude

congruent to BL (since ALIIBH). Therefore/kABH is equivalent

to a half of the rectangleBLMH. Thus the rectangle BLMH is

equivalent to the squareBDEA. Similarly, connecting G with B,
and A with K, and considering/kGCB and/kACK, we prove that
the rectangle LCKM is equivalent to the square AFGC. This im-
pliesthat the square BCKH is equivalent to the sumof the squares

BDEA and AFGC.

A tiling proof, shown in Figure 265, is based on tiling the
square, whose side is congruent to the sum of the legsof a given

right triangle, by the square constructed on the hypotenuse and by

four copies of the given triangle, and then re-tiling it by the squares
constructed on the legsand by the same four triangles.

One more proof,basedon similarity, will be explained shortly.

260. Generalized Pythagorean theorem. Thefollowing gen-

eralization of the Pythagorean theorem is found in the 6th book of
Euclid's \"Elements.\"

Theorem. If three similarpolygons(P,Q, and R, Figure

266) are constructed on the sides of a right tviangle\177 then

the polygon constructed on the hypotenuse is equivalentto
the sumof thepolygons constructed on the legs.

\177' In the special case when the polygonsaresquares,thisproposition
turns into the Pythagorean theorem as stated in \365259. Due to the

theorem of \365251, the generalization follows from this special case.
Indeed,the areasofsimilar polygons are proportional to the squares
of homologoussides,and therefore

area of P area of Q area of R
a2 b 2 c 2

Then, by properties of proportions,
areaofP + area of Q area of R

a 2 + b 2 , c 2

Since a 2 + b2 = c2, it follows that

area ofP + area ofQ = area of R.
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Moreover, the same reasoning applies to similarfigures more general

than polygons. However, Euclid gives anotherproofof the general-

ized Pythagorean theorem, which does not rely on this special case.
Let us explain such a proofhere. In particular, we will obtain one
more proofof the P.ythagorean theorem itself.

Figure 266 ,Figure 267

First, let us notice that to prove the generalizedPythagorean

theorem, it suffices to prove it for polygonsof oneshapeonly. Indeed,

suppose that the areas of two polygonsR and R' ofdifferent shapes

constructed on some segment (e.g. the hypotenuse)have a certain

ratio k. Then the areas of polygonssimilarto them (e.g. P and P',
or Q and Q\177) and constructed on another segment which is, say, ra

times shorter, will be ra 2 times smaller for both shapes. Therefore
they will have the sameratiok. Thus,if the areas of P\177, Q\177 and PJ

satisfy the property that the first two add up to the third one, then
the same holds true for the areas of P, Q and P\177 which are/\177 times

greater.

Now the idea is to take polygons similar not to a square, but
to the right triangle itself, and' to construct them not outsidethe
triangle but inside it. 4

Namely, drop the altitude of the right triangle to its hypotenusel
The altitude divides the triangle into two triangles similar to it. To-
gether with the original triangle, we thus have three similar right

triangles constructed on the sides of it, and such that two of the
areas add up to the third one.

Corollary.;f outside of a right triangle (Figure 267) two semi-
c_i!clesare described on its legs, and another semicircle is described

4The collage on the cover of this book illustr\177.tes this idea.
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on the hypotenuse so that it contains the triangle, then the geometric
figure bounded by the semicircles is equivalent to the triangle:

area ofA + area orb = area of C.

Indeed, after addingtobothsidesofthisequality the areas (unshaded

in Figure 267) of the disk segmentsboundedby the greatest of the
semicircles and by the legsofthe triangle, it is required to prove that
the areasofthe half-disks constructed on the legs add up to the area
ofthe half-disk constructed on the hypotenuse. This equality follows

from the generalized Pythagorean theorem.
Remark. The figuresA and B are known as Hippocrates' lunes

after a Greekmathematician Hippocrates of Chios who studied them
in the 5th century B.C. in connection with the p\177oblem of squaring

the circle. When the triangle isisosceles,then the lunes are congruent
and each is equivalentto a half of the triangle.

EXERCISES

Miscellaneous problems

576. The altitudedroppedto the hypotenuse divides a given right
-triangle into smaller triang]eswhose radii of the inscribed circles are
6 and 8 cm.Compute the radius of the inscribed circle of the given
triangle.
577. Compute the sides of a right triangl e giventhe radiiof its
circumscribed and inscribed circle.

575. Compute the area of a right triangle if the foot of the altitude
droppedto the hypotenuse of length c divides it in the extreme and
meanratio.
579.Compute the area of the quadrilateral bounded by the four

bisectors of the angles of a rectangle with the sidesa and b cm.

550.' Cut a given rectangle into four right triangles so that they can
be reassembledinto two smaller rectangles similar to the given one.
551. Thediagonals divide a qua. drilateral into four triangles of which
three have the areas 10, 20, and 30 cm2, and the areaofthe fourth

one is greater. Compute the area of the quadrilateral.
552.A circle of the radius congruent to the altitudeofa given isosce-

le's triangle is rolling along the base. Show that the arc length cut
out on the circleby the lateral sides of the triangle remains constant.
555. A circle is divided into four arbitrary arcs, and the midpoints

of the arcs are connected pairwise by straight'segments.Prove that

two of the segments are perpendicular.
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58\177. Compute the length of a commontangentof two circles of radii

r and 2r which intersectat the right angle.

585. Prove that in a triangle, the altitudesha, hb, hc, and the radius
of the inscribedcirclesatisfy the relation: 1/ha + 1/hb + 1/hc = 1/r.
586.Prove that in a right triangle, .the sum of the diametersofthe
inscribed and circumscribed circles is congruent to the sum of the
legs.
587.*Prove that in a scalene triangle, the sum of the diametersof
the inscribed and circumscribed circle is congruent to the sumofthe
segments of the altitudes from the '\370rthocenter to the vertices.

588.* Find the geometric locusof allpointswith a fixed difference

of the distances from the sides of a given angle.
589.* A side of a square is the hypotenuseof a right triangle situated

in the exterior of the square.Provethat thebisectorofthe right angle

of the triangle passes through the centerofthe square, and compute

the distance between the center and the vertexof the right angle of

the triangle, given the sumof its legs.
590.*From each of the two,given points of a givenline,bbth tan-

gents to a given circle are drawn, and in the two angles thus formed,
congruent circles are inscribed.Prove that their line of centers is
parallel to the given line.

591.* Three congruent circles intersect at onepoint.Prove that the

three lines, each passing through the centerofoneof the circles and

the second intersection point of the other two circles, are concurrent.

592.* Given a triangle ABC, find the geometric locus of points M
such that the trianglesABM and ACM are equivalent.

593.* On a givencircle,find two points, A and B, symmetric about
a given diameter CD and such that a given point E on the diameter

is the ortho center of the triangleABC.
59\177.* Find the geometric locus of the points of intersectionof two

chords AC and BD of a given circle, where'AB is a fixed chord of

this circle, and CD is any chord of a fixed length.

595.* Construct a triangle,given its altitude, bisector and median
drawn from the same vertex.

'596.* Construct a triangle,given its circumcenter, incenter, and the
intersection point of the extensionof oneof the bisectors with the
circumscribed circle.
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