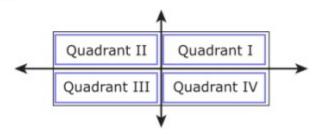
Algebra 2 quick quiz 03312023

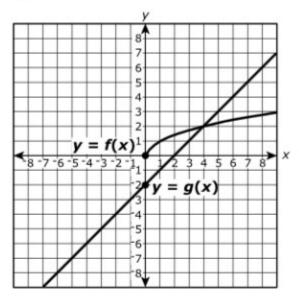
Question 1.

Let $p(x) = x^3 - 3x^2 - 10x + 24$. What is the remainder when p(x) is divided by x-1 ?

- A. 0
- @ B. 12
- © C. 24
- D. 30


Question 2.

A logarithmic function is defined below.


$$f(x) = \log x$$

In which quadrant(s) is the graph of f?

Select each correct quadrant.

The graphs of the functions $f(x)=\sqrt{x}$ and g(x)=x-2 are shown in the xy-coordinate plane.

When the equation $\sqrt{x}=x-2$ is solved by squaring both sides of the equation, the algebraic solutions to the squared equation are x=1 and x=4. What do the graphs of f and g reveal about the solutions?

Select from the drop-down menus to correctly complete the sentence.

The graphs reveal that

both 1 and 4 are solutions 4 is a solution and 1 is not a solution neither 1 nor 4 is a solution 1 is a solution and 4 is not a solution

to the equation

$$\sqrt{x} = x - 2$$
 because

f and g intersect at x = 4 and do not intersect at x = 1 f is a linear function and g is not a linear function f and g have different y-intercepts

Question 4.

The variables z_1 and z_2 are defined as $z_1=6+3i$ and $z_2=10+8i$. Which expression is equivalent to z_1z_2 ?

- A. 84 + 78i
- \odot B. 36 + 78i
- \circ C. 60 + 54i
- □ D. 16 + 11i

Question 5.

$$\left(\sqrt{x}\right)^2 - 6\sqrt{x} = -8$$

Which values of x are solutions to the equation shown?

Select all that apply.

- A. 0
- B. 4
- C. 7
- D. 8
- E. 14
- F. 16

Question 6.

On a TV game show, contestants win money for correctly answering trivia questions. The first question is worth \$1,000. The value of each subsequent question is two times the value of the previous question.

Part A

If a contestant answers the first 5 questions correctly, how much money will the contestant win?

Enter your answer in the box.

The contestant will win \$

Part B

Contestant A answers the first 3 questions correctly. Contestant B answers the first 10 questions correctly. Which expression can be used to calculate how much more contestant B will win than contestant A?

$$\bigcirc$$
 A. $\frac{1,000(1-2)^{10}}{1-2} - \frac{1,000(1-2)^3}{1-2}$

$$egin{array}{cccc} egin{array}{ccccc} & B. & \frac{1,000 \left(1-2^{10}\right)}{1-2} & -\frac{1,000 \left(1-2^{3}\right)}{1-2} \end{array}$$

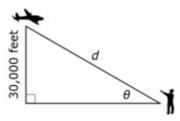
$$\circ$$
 C. $1,000(1-2)^9-1,000(1-2)^2$

$$\odot$$
 D. 1,000 $\left(1-2^9\right)-1,000 \left(1-2^2\right)$

Question 7.

Which equation has non-real solutions?

$$A. 3x^2 - 2x - 5 = 0$$


© B.
$$4x^2 - 3x + 3 = 0$$

$$0 \quad C. \quad 4x^2 + 12x + 9 = 0$$

$$0$$
 D. $6x^2 + 5x - 6 = 0$

Question 8.

An airplane is flying at an altitude of 30,000 feet. The distance, d, in feet, from an observer on the ground to the plane is a function of the angle of elevation, θ , defined as the acute angle between the ground and the line between the observer and the plane, as shown in the figure.

Part A

Which equation gives d as a function of θ ?

$$\bigcirc$$
 A. $d(\theta) = \frac{30,000}{\sin \theta}$

$$\bigcirc$$
 B. $d(\theta) = \frac{\sin \theta}{30,000}$

$$\bigcirc$$
 C. $d(\theta) = \frac{30,000}{\cos \theta}$

$$\bigcirc$$
 D. $d(\theta) = \frac{\cos \theta}{30,000}$

Part B

Within the context of the situation described, what is the domain of the function d? Enter the appropriate values, in degrees, in the inequality.

Enter your answer in the boxes.

Part C

When the angle of elevation is 75 degrees, what is the distance between the observer and the plane, to the nearest foot?

Enter your answer in the box.

feet

Part D

For what value of θ will the distance between the observer and the plane be 60,000 feet?

Enter your answer in the box.

degrees

Question 9.

The expression 8^x is equivalent to 32^y , where x and y are positive. What is the value of $\frac{y}{x}$?

- \bigcirc C. $\frac{5}{3}$
- D. 4

Question 10.

What are the solutions of the equation $x^2-4x+5=0$?

Select all solutions.

- \square A. 2+i
- \blacksquare B. 2-i
- \square C. 2+2i
- \square D. 2-2i
- E. 5
- F. −1

Bonus Question

Question 11a.

A system of three equations is given.

$$\begin{cases} 2x - 3y + z = -2\\ x + 6y - 2z = -6\\ x + 3y = 1 \end{cases}$$

What is the solution (x, y, z)?

Enter your answers in the boxes.

	_	 	٦.
/	27	1.1	1
()			1.
		J. L	1.

Question 11b.

A certain computer loses half of its value every two years.

Part A

After how many years will the computer be worth 12.5% of its initial value?

Enter your answer in the box.

years

Part B

If the value of the computer after 3 years is \$425, what was the initial value of the computer?

- A. \$601.04
- B. \$850.00
- © C. \$1,202.08
- D. \$2,404.16