Algebra 2 quick quiz 03282023

Question 1.

Which of the following is equivalent to (i+3) + i(2i-4)?

- \bigcirc A. -5i+1
- ⊚ B. -i+3
- C. i 3

Question 2.

Let $f(x)=2x^2-x+1$ and let g(x)=x-4. Which statements are true? Select **all** that apply.

- \square A. One root of f(x) is -4.
- lacksquare B. One root of f(x) is 29.
- \square C. If f(x) is divided by g(x), the remainder is 29.
- \square D. g(x) is a factor of f(x).
- \square E. g(x) is not a factor of f(x).

Question 3.

Solve $\sqrt{a}=a-6$. What is the extraneous solution?

Enter your answer in the box.

Question 4.

Consider the equation $p^2-5p-6-x(p-6)^2=0$, where p is a real constant.

Part A

If p=6, then the equation has

- A. no real solutions.
- B. exactly one real solution.
- C. exactly two real solutions.
- D. infinitely many real solutions.

Part B

If $p \neq 6$, then x =

- \bigcirc A. $\frac{p-2}{p-6}$
- \bigcirc B. $\frac{p-1}{p-6}$
- \bigcirc C. $\frac{p+1}{p-6}$
- \bigcirc D. $\frac{p+2}{p-6}$

Question 5.

A solution for each equation is given.

Drag and drop the letter of each equation into the appropriate box for its solution.

А В

A
$$-4x + 20 - a = 4(-x + 5) + a$$

B
$$4x - 20 + 2a = 4(x - 5) + a + 1$$

$$a=1$$
 $a=0$ $a=-$

Question 6.

Four sequences are shown. The general term for each sequence is defined for a_n , where n is a positive integer. For each sequence, drag the definition that generates the sequence into the appropriate box.

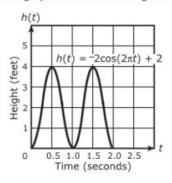
$$a_{n} = -3 - 2.5(n - 1)$$

$$a_{n} = -3(-2)^{n-1}$$

$$a_{n} = 81(\frac{1}{3})^{n-1}$$

$$a_{n} = 81 - 3(n - 1)$$

$$-3, 6, -12, 24, \dots$$


$$81, 78, 75, 72, \dots$$

$$-3, -5.5, -8, -10.5, \dots$$

Question 7.

81, 27, 9, 3, ...

Lara is jumping rope for exercise. The function $h(t)=-2\cos(2\pi t)+2$ gives the height of the midpoint of the rope, in feet, after t seconds. The graph of the function is given for the time interval $0 \le t \le 2$.

Select **all** the intervals over which there is a negative average rate of change in the height of the midpoint of the rope.

Select all that apply.

- $lacksquare A. \ 0 < t < 0.5$
- \blacksquare B. 0 < t < 1
- \square C. 0.5 < t < 1
- lacksquare D. 1 < t < 2
- lacksquare E. 1.5 < t < 2

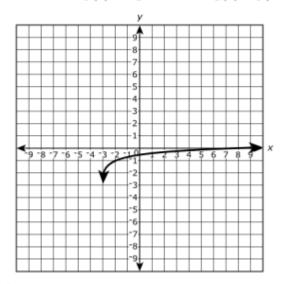
Question 8.

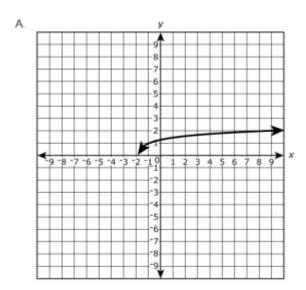
A bank pays depositors a 2% interest rate compounded semiannually. Let P represent an initial deposit and let t represent the number of years that the deposit is in the bank. The expression $P\left(1+\frac{0.02}{2}\right)^{2t}$ can be used to determine the account balance after t years. Which expression accurately reflects the annual interest rate?

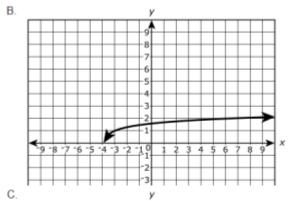
- A. P(1.01)^t
- B. P(1.21)^t
- \circ C. $P(1.0201)^t$
- D. P(1.0404)^t

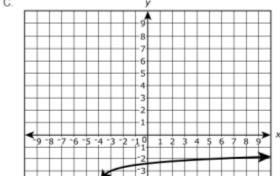
Question 9.

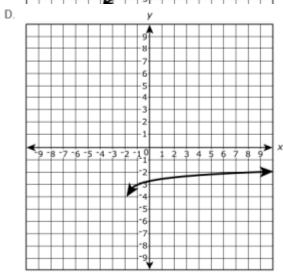
Solve the system of equations below for x, y, and z.


$$\begin{cases} 4x - 2y + 3z = 9 \\ x - 2y = -3 \\ 2x + 3y = 1 \end{cases}$$


Enter your answers in the boxes.


$$x =$$
 $y =$ $z =$


Question 10.


. The given graph represents the function f(x) . Let g be defined as g(x)=f(x-1)+2 .

Bonus Question

Question 11a.

For m>0 , the expression $rac{2\left(\sqrt{m}
ight)^3}{\sqrt[4]{m}}$ can be rewritten in the form $2m^a$, where a is a fraction.

What is the value of a?

Enter your answer in the boxes.

Question 11b.

An expression is given.

$$\frac{(3x)}{(3x)^{\frac{3}{2}}}$$

If x>0, which of the expressions listed is equivalent to the expression given? Select **all** that apply.

- \square A. $\frac{1}{3x}$
- \blacksquare B. $\frac{1}{\sqrt{3x}}$
- \square C. $\frac{1}{3\sqrt{x}}$
- \square D. $(3x)^{\frac{1}{2}}$
- \blacksquare E. $(3x)^{-\frac{1}{2}}$