Algebra 2 quick quiz 02272023

Question 1.

The expression $2 - \frac{x-1}{x+2}$ is equivalent to

(1)
$$1 - \frac{3}{x+2}$$

(1)
$$1 - \frac{3}{x+2}$$
 (3) $1 - \frac{1}{x+2}$

(2)
$$1 + \frac{3}{x+2}$$
 (4) $1 + \frac{1}{x+2}$

$$(4) 1 + \frac{1}{r+9}$$

Question 2.

Which description could represent the graph of $f(x) = 4x^{2}(x + a) - x - a$, if a is an integer?

- (1) As $x \to -\infty$, $f(x) \to \infty$, as $x \to \infty$, $f(x) \to \infty$, and the graph has 3x-intercepts.
- (2) As $x \to -\infty$, $f(x) \to -\infty$, as $x \to \infty$, $f(x) \to \infty$, and the graph has 3 x-intercepts.
- (3) As $x \to -\infty$, $f(x) \to \infty$, as $x \to \infty$, $f(x) \to -\infty$, and the graph has 4 x-intercepts.
- (4) As $x \to -\infty$, $f(x) \to -\infty$, as $x \to \infty$, $f(x) \to \infty$, and the graph has 4 x-intercepts.

Question 3.

After Roger's surgery, his doctor administered pain medication in the following amounts in milligrams over four days.

Day (n)	1	2	3	4
Dosage (m)	2000	1680	1411.2	1185.4

How can this sequence best be modeled recursively?

(1)
$$m_1 = 2000$$

 $m_n = m_{n-1} - 320$

$$\begin{array}{c} (3) \ \ m_1 = 2000 \\ m_n = (0.84) m_{n\,-\,1} \end{array}$$

(2)
$$m_n = 2000(0.84)^{n-1}$$
 (4) $m_n = 2000(0.84)^{n+1}$

(4)
$$m_n = 2000(0.84)^{n+1}$$

Question 4.

The expression $\frac{9x^2-2}{3x+1}$ is equivalent to

(1)
$$3x - 1 - \frac{1}{3x + 1}$$
 (3) $3x + 1 - \frac{1}{3x + 1}$

(3)
$$3x + 1 - \frac{1}{3x + 1}$$

(2)
$$3x - 1 + \frac{1}{3x + 1}$$
 (4) $3x + 1 + \frac{1}{3x + 1}$

$$(4) \ 3x + 1 + \frac{1}{3x + 1}$$

Question 5.

If f(x) is an even function, which function must also be even?

(1)
$$f(x-2)$$

(3)
$$f(x + 1)$$

$$(2) f(x) + 3$$

(4)
$$f(x+1) + 3$$

Question 6.

Given y > 0, the expression $\sqrt{3x^2y} \cdot \sqrt[3]{27x^3y^2}$ is equivalent to

(1)
$$81x^5y^3$$

(3)
$$3^{\frac{5}{2}}x^2y^{\frac{5}{3}}$$

(2)
$$3^{1.5}x^2y$$

(4)
$$3^{\frac{3}{2}}x^2y^{\frac{7}{6}}$$

Question 7.

What is the solution set of the equation $\frac{10}{x^2 - 2x} + \frac{4}{x} = \frac{5}{x - 2}$?

$$(2)$$
 $\{0\}$

Question 8.

What are the solution(s) to the system of equations shown below?

$$x^2 + y^2 = 5$$
$$y = 2x$$

- (1) x = 1 and x = -1 (3) (1, 2) and (-1, -2)
- (2) x = 1

(4) (1, 2), only

Question 9.

If \$5000 is put into a savings account that pays 3.5% interest compounded monthly, how much money, to the nearest ten cents, would be in that account after 6 years, assuming no money was added or withdrawn?

(1) \$5177.80

(3) \$6146.30

(2) \$5941.30

(4) \$6166.50

Question 10.

The Fahrenheit temperature, F(t), of a heated object at time t, in minutes, can be modeled by the function below. F_s is the surrounding temperature, F_0 is the initial temperature of the object, and k is a constant.

$$F(t) = F_s + (F_0 - F_s)e^{-kt}$$

Coffee at a temperature of 195°F is poured into a container. The room temperature is kept at a constant 68° F and k = 0.05. Coffee is safe to drink when its temperature is, at most, 120°F. To the nearest minute, how long will it take until the coffee is safe to drink?

(1) 7

(3) 11

(2) 10

(4) 18

Bonus Question

Question 11.

Let x and y represent natural numbers. Prove that the following equation is true for all x and y values. Show your work or explain your answer.

$$\left(x^2 + y^2\right)^2 - \left(x^2 - y^2\right)^2 = (2xy)^2$$