Algebra 2 quick quiz 02162023

Question 1.

Given $x \neq -2$, the expression $\frac{2x^2 + 5x + 8}{x + 2}$ is equivalent to

(1)
$$2x^2 + \frac{9}{x+2}$$

(3)
$$2x + 1 + \frac{6}{x + 9}$$

(2)
$$2x + \frac{7}{x+2}$$

(1)
$$2x^2 + \frac{9}{x+2}$$
 (2) $2x + \frac{7}{x+2}$ (3) $2x + 1 + \frac{6}{x+2}$ (4) $2x + 9 - \frac{10}{x+2}$

Question 2

What is the solution set of $x = \sqrt{3x + 40}$?

$$(1) \{-5,8\}$$

$$(3)$$
 $\{-4,10\}$

$$(2)$$
 {8}

Question 3.

Consider the data in the table below.

	Right Handed	Left Handed
Male	87	13
Female	89	11

What is the probability that a randomly selected person is male given the person is left handed?

(1) $\frac{13}{200}$

(3) $\frac{13}{50}$

 $(4) \frac{13}{24}$

Question 4.

The function $N(x) = 90(0.86)^x + 69$ can be used to predict the temperature of a cup of hot chocolate in degrees Fahrenheit after x minutes. What is the approximate average rate of change of the temperature of the hot chocolate, in degrees per minute, over the interval [0, 6]?

(1) - 8.93

(3) 0.11

(2) -0.11

(4) 8.93

Question 5.

A recursive formula for the sequence 40, 30, 22.5, ... is

(1)
$$g_n = 40 \left(\frac{3}{4}\right)^n$$

(3)
$$g_n = 40 \left(\frac{3}{4}\right)^{n-1}$$

(2)
$$g_1 = 40$$

 $g_n = g_{n-1} - 10$

(4)
$$g_1 = 40$$

 $g_n = \frac{3}{4}g_{n-1}$

Question 6.

Consider the following patterns:

I. 16, -12, 9, -6.75, ...

II. 1, 4, 9, 16, ...

III. 6, 18, 30, 42, ...

IV. $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots$

Which pattern is geometric?

(1) I

(3) III

(2) II

(4) IV

Question 7.

Consider the system below.

$$x + y + z = 9$$

$$x - y - z = -1$$

$$x - y + z = 21$$

Which value is *not* in the solution, (x,y,z), of the system?

(1) - 8

(3) 11

(2) -6

(4) 4

Question 8.

Which statement regarding polynomials and their zeros is true?

- (1) $f(x) = (x^2 1)(x + a)$ has zeros of 1 and -a, only.
- (2) $f(x) = x^3 ax^2 + 16x 16a$ has zeros of 4 and a, only.
- (3) $f(x) = (x^2 + 25)(x + a)$ has zeros of ± 5 and -a.
- (4) $f(x) = x^3 ax^2 9x + 9a$ has zeros of ± 3 and a.

Question 9.

If a solution of $2(2x - 1) = 5x^2$ is expressed in simplest a + bi form, the value of b is

(1) $\frac{\sqrt{6}}{5}i$

(3) $\frac{1}{5}i$

(2) $\frac{\sqrt{6}}{5}$

 $(4) \frac{1}{5}$

Question 10.

Expressed in simplest a + bi form, $(7 - 3i) + (x - 2i)^2 - (4i + 2x^2)$ is

(1)
$$(3-x^2) - (4x+7)i$$
 (3) $(3-x^2) - 7i$

$$(3) (3 - x^2) - 7i$$

(2)
$$(3 + 3x^2) - (4x + 7)i$$
 (4) $(3 + 3x^2) - 7i$

$$(4) (3 + 3x^2) - 7x^2$$

Bonus Question

Question 11.

Town A has a population size of 4,000 and is predicted to increase in size by 8% each year. Town B has a population size of 5,000 and is predicted to increase in size by 6% each year.

Part A

Which statement **best** compares the size of the populations of the towns in 5 years?

- A. The size of the population in Town A will be greater than that of Town B with a difference less than 1,000 people.
- B. The size of the population in Town A will be greater than that of Town B with a difference greater than 1,000 people.
- C. The size of the population in Town B will be greater than that of Town A with a difference less than 1,000 people.
- D. The size of the population in Town B will be greater than that of Town A with a difference greater than 1,000 people.

Part B

If the predictions are correct, the two populations will be equal in size at some point in time. To the nearest person, which is the **best** estimate of the size of each population at the point in time when they are equal?

- A. 8,636 people
- B. 9,919 people
- C. 10,025 people
- O. 10,878 people