
Algebra 1 Quick Quiz 11162022

Question 1.

Which equation best describes this graph?

F
$$y = 20 - 4x$$

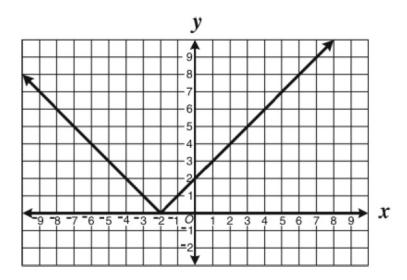
y $= x + 14 - x^{2}$
y $= 16 - 2x$
y $= x^{2} - 5x + 18$

Question 2

x	-6	2	10
у	1	3	5

Which equation is satisfied by all the points in the table?

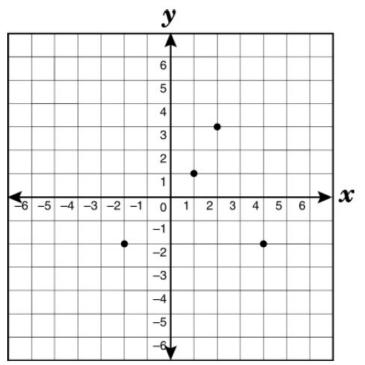
F x - 4y = 10 **G** 4y - x = 10 **H** 7y - x = 20**I** x - 7y = 20


Question 3.

The ordered pairs in the table follow a quadratic pattern.

8	2	7	9	4	x
64	4	49	81	16	25

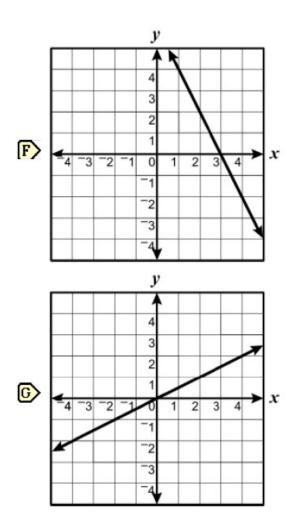
What is the value of x?


Question 4.

What is the domain of the function shown?

- [F> {All real numbers greater than zero}
- 6 {All real numbers}
- H> {All real numbers less than -2}
- []> {All real numbers greater than -2}

Question 5.


What is the apparent range of the relation shown on the grid?

F> {-2, 1, 3}
G> {-2, 1, 2, 4}
H> {1, 2, 3, 4}
[]> {-2, 2, 3, 4}

Question 6.

x	1	4	3
у	4	-2	0

Which graph appears to contain all the points in the table?

Question 7.

Which set of ordered pairs is not a function?

$$\begin{array}{c|c} \hline F & \{(-2, 3), (4, 1), (2, 1), (1, 5)\} \\ \hline G & \{(1, 4), (2, 3), (3, 2), (4, 3)\} \\ \hline H & \{(2, 3), (3, 2), (4, 4), (5, 2)\} \\ \hline I & \{(-2, 3), (1, 4), (2, 3), (1, 5)\} \end{array}$$

Question 8.

The stress distribution on a structure is given by $s = 2x^2 + 4x - 30$ where s is stress in pounds per square inch and x is the distance in feet from a reference point. At what distance is the stress equal to 0?

F	3 ft
<mark>6</mark> >	5 ft
H	6 ft
D	12 ft

Question 9.

Which is a zero of the function f(x) = 3x - 21?

Question 10.

A lumber yard sells square scraps of plywood with sides varying from 1 foot to 4 feet. Ed wants to use some of these pieces to build storage cubes. The relationship between the length of the side of a cube and the volume of the cube is expressed by the function

 $f(x) = x^3$

where x is the length of a side of the cube. What is the range of this function in cubic feet for the domain given?

F Range varies from 1 to 64
 G Range varies from 1 to 16
 H {1, 64}
 I {1, 16}

Bonus Question 11.

Given the relation $R = \left\{(-4,2),\,(3,6),\,(x,8),\,(-1,4)\right\}$

Which value of *x* would make this relation a function?

(1) - 4	(3) 3
(0) 1	(1) 0

(2) -1	(4) 0
--------	-------