Algebra Quick Quiz 02032022

Question 1.

Which of the following is equivalent to this expression?

$$-5x(-6x^2+1)$$

- (A) $30x^3 4x$
- (B) $30x^3 5x$
- $\bigcirc -11x^3 4x$
- $\bigcirc -11x^3 5x$

Question 2

Consider this function.

$$f(x) = x(18 - x)$$

What are the values of f(0), f(5), and f(18)?

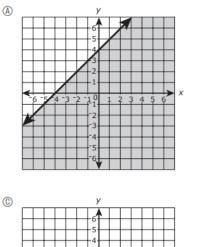
A	f(0) = -18f(5) = 90f(18) = -36	®	f(0) = 0f(5) = 90f(18) = -324
©	f(0) = 0 f(5) = 65 f(18) = 0	٥	$\begin{array}{l} f(0) = 18 \\ f(5) = -450 \\ f(18) = -36 \end{array}$

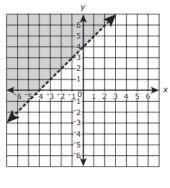
Question 3.

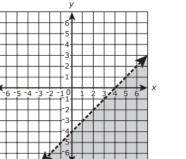
A ball is thrown into the air from the top of a building. The height, h(t), of the ball above the ground t seconds after it is thrown can be modeled by $h(t) = -16t^2 + 64t + 80$. How many seconds after being thrown will the ball hit the ground?

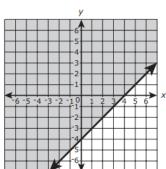
- (1) 5 (3) 80
- (2) 2 (4) 144

Question 4. You should be able to do this without a graphing calculator.


Consider this inequality.

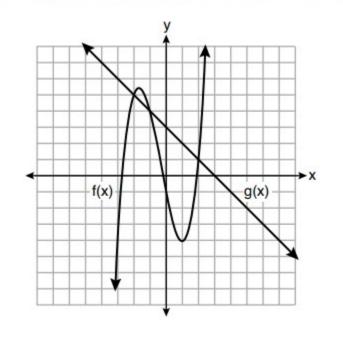

 $y \ge x - 4$


Which of the following graphs represents the solution set of the inequality?


B

0

Question 5.


Line *w* is represented by this equation.

$$y = 5x + 3$$

Which of the following equations represents a line that is perpendicular to line *w*?

- (B) y = -5x + 1
- $\bigcirc y = \frac{1}{5}x + 1$
- (1) y = 5x + 1

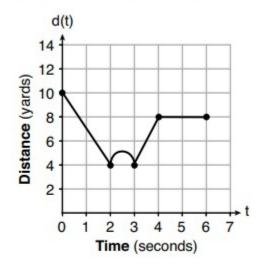
Question 6.

The functions f(x) and g(x) are graphed on the set of axes below.

For which value of <i>x</i> is $f(x) \neq g(x)$?		
(1) - 1	(3) 3	
(2) 2	(4) - 2	

Question 7.

The quadratic functions r(x) and q(x) are given below.


x	r(x)	
-4	-12	
-3	-15]
-2	-16	$q(x) = x^2 + 2x - 8$
-1	-15]
0	-12	
1	7	

The function with the *smallest* minimum value is

- (1) q(x), and the value is -9 (3) r(x), and the value is -16
- (2) q(x), and the value is -1 (4) r(x), and the value is -2

Question 8.

A child is playing outside. The graph below shows the child's distance, d(t), in yards from home over a period of time, t, in seconds.

Which interval represents the child constantly moving closer to home?

$(1) \ 0 \le t \le 2$	$(3) \ 3 \le t \le 4$
$(2) \ 2 \le t \le 3$	$(4) \ 4 \le t \le 6$

Question 9.

A dolphin jumps out of the water and then back into the water. His jump could be graphed on a set of axes where *x* represents time and *y* represents distance above or below sea level. The domain for this graph is best represented using a set of

(1) integers	(3) real numbers
(2) positive integers	(4) positive real numbers

Question 10.

Which of the following is the solution set of this inequality?

2 - 4y > 14

(A) y > -3
(B) y < -3
(C) y > 3
(D) y < 3

Bonus Question 11

This table shows the values of the linear function f(x) for different values of x.

x	f(x)
0	120
20	90
40	60
60	30

The function g(x) is represented by this equation.

$$g(x) = 10x + 40$$

Which statement correctly compares the rates of change and *y*-intercepts of f(x) and g(x)?

- (a) Function f(x) has a greater rate of change and a greater *y*-intercept than function g(x).
- ^(B) Function g(x) has a greater rate of change and a greater *y*-intercept than function f(x).
- © Function f(x) has a greater rate of change than function g(x), and function g(x) has a greater *y*-intercept than function f(x).
- **(D)** Function g(x) has a greater rate of change than function f(x), and function f(x) has a greater *y*-intercept than function g(x).