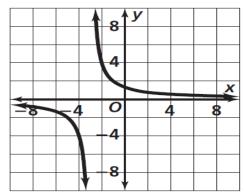
Quick Quiz 01282022

Question 1.

Which function is NOT linear?

A
$$x + 2 = y$$


A
$$x + 2 = y$$
 C $x + y - 30 = 3x$

$$\mathbf{B} \quad \frac{x}{4} = y$$

B
$$\frac{x}{4} = y$$
 D $y = 25 - x^2$

Question 2

The function $y = \frac{4}{x+3}$ is graphed below.

For which values is the function positive?

A
$$x \leq 0$$

C
$$x < -3$$

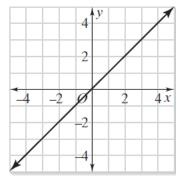
A
$$x \le 0$$
 C $x < -3$ **B** $x > -3$ **D** $x \ge -7$

D
$$x \ge -7$$

Question 3.

Which value of x makes $\frac{x-3}{4} + \frac{2}{3} = \frac{17}{12}$ true?

(1) 8


(3) 0

(2)6

(4) 4

Question 4.

Which equation represents the function graphed below?

$$\mathbf{A} \ y = x$$

$$c y = 2x$$

$$\mathbf{B} \ \ y = -x$$

D
$$y = 1 - x$$

Question 5.

A company that manufactures radios first pays a start-up cost, and then spends a certain amount of money to manufacture each radio. If the cost of manufacturing r radios is given by the function c(r)=5.25r+125, then the value 5.25 best represents

- (1) the start-up cost
- (2) the profit earned from the sale of one radio
- (3) the amount spent to manufacture each radio
- (4) the average number of radios manufactured

Question 6.

Which function does the table of values represent?

X	-2	-1	0	1	2	
y	-3	0	1	0	-3	
A $y = -x^2 + 1$ B $y = x^3 - 5$				C $y = -2x^2 - 2$ D $y = 2x^3 + 9$		

A
$$y = -x^2 + 1$$

$$v = -2x^2 - 2$$

B
$$y = x^3 - 5$$

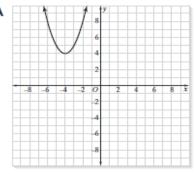
D
$$y = 2x^3 + 9$$

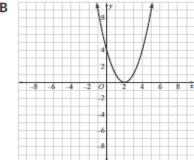
Question 7.

If $f(x) = \frac{1}{3}x + 9$, which statement is always true?

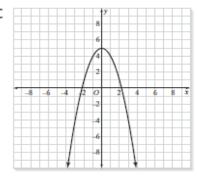
(1)
$$f(x) < 0$$

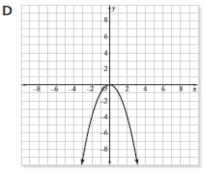
(3) If
$$x < 0$$
, then $f(x) < 0$.

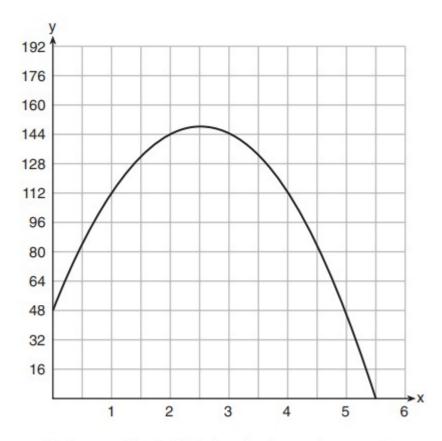

(2)
$$f(x) > 0$$


(4) If
$$x > 0$$
, then $f(x) > 0$.

Question 8.


Which of the following represents a graph of a quadratic function with no real-number solution?




C

Question 9.

A ball is thrown into the air from the edge of a 48-foot-high cliff so that it eventually lands on the ground. The graph below shows the height, y, of the ball from the ground after x seconds.

For which interval is the ball's height always decreasing?

$$(1) 0 \le x \le 2.5$$

(3)
$$2.5 < x < 5.5$$

(2)
$$0 < x < 5.5$$

$$(4) x \ge 2$$

Question 10.

If the parent function of f(x) is $p(x) = x^2$, then the graph of the function $f(x) = (x - k)^2 + 5$, where k > 0, would be a shift of

- (1) k units to the left and a move of 5 units up
- (2) k units to the left and a move of 5 units down
- (3) k units to the right and a move of 5 units up
- (4) k units to the right and a move of 5 units down

Bonus Question

Question 11

Given:
$$f(x) = \frac{2}{3}x - 4$$
 and $g(x) = \frac{1}{4}x + 1$

Four statements about this system are written below.

I.
$$f(4) = g(4)$$

- II. When x = 12, f(x) = g(x).
- III. The graphs of f(x) and g(x) intersect at (12,4).
- IV. The graphs of f(x) and g(x) intersect at (4,12).

Which statement(s) are true?

(1) II, only

(3) I and IV

(2) IV, only

(4) II and III