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Translator’s Foreword

Those reading these lines are
hereby summoned to raise their
children to o good command of
Elementary Geometry, to be judged
by the rigorous standards of the
gncient Greek mathematicians.

A magic spell

Mathematics is an ancient culture. It is passed on by each generation to
the next. What we now call Elementary Geometry was created by Greeks
some 2300 years ago and nurtured by them with pride for about a millen-
nium. Then, for another millennium, Arabs were preserving Geometry and
transcribing it to the language of Algebra that they invented. The effort
bore fruit in the Modern Age, when exact sciences emerged through the
work of Frenchman Rene Descartes, Englishman Isaac Newton, German
Carl Friedrich Gauss, and their contemporaries and followers.

Here is one reason. On the decline of the 19th century, a Scottish pro-
fessor showed to his class that the mathematical equations, he introduced
to explain electricity experiments, admit wave-like solutions. Afterwards
a German engineer Heinrich Hertz, who happened to be a student in that
class, managed to generate and register the waves. A century later we find
that almost every thing we use: GPS, TV, cell-phones, computers, and
everything we manufacture, buy, or learn using them, descends from the
mathematical discovery made by James Clerk Maxwell.

I gave the above speech at a graduation ceremony at the University of
California Berkeley, addressing the class of graduating math majors — and
then T cast a spell upon them.

Soon there came the realization that without a Magic Wand the spell
won’t work: I did not manage to find any textbook in English that I could
recommend to a young person willing to master Elementary Geometry.
This is when the thought of Kiselev’s came to mind.

Andrei Petrovich Kiselev (pronounced And-'rei Pet-"ro-vich Ki-se-'lyov)
left & uhique legacy to mathematics education. Born in 1852 in a provin-
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cial Russian town Mzensk, he graduated in 1875 from the Department of
Mathematics and Physics of St.-Petersburg University to begin a long ca-
reer as a math and science teacher and author. His school-level textbooks
“A Systematic Course of Arithmetic” ! [9], “Elementary Algebra” [10], and
“Klementary Geometry” (Book I “Planimetry”, Book II “Stereometry”) [3]
were first published in 1884, 18%8 and 1892 respectively, and soon gained
a leading position in the Russian mathematics education. Revised and
published more than & hundred times altogether, the books retained their
leadership over many decades both in Tsarist Russia, and after the Revolu-
tion of 1917, under the quite different cultural circumstances of the Soviet
epoch. A few vears prior to Kiselev’s death in 1940, his books were officially
given the status of stable, i.e. main and only textbooks to be used in all
schools to teach all teenagers in the totalitarian state with a 200-million
population. The books held this status until 1955 (and “Stereometry” even
until 1974) when they got replaced in this capacity by less successful clones
written by more Soviet authors. Yet “Planimetry” remained the favorite
under-the-desk choice of many teachers and a must for honors geometry stu-
dents. In the last decade, Kiselev’s “Geometry,” which has long become a
rarity, was reprinted by several major publishing houses in Moscow and St.-
Petersburg in both versions: for teachers [6, 8] as an authentic pedagogical
heritage, and for students [5, 7] as a textbook tailored to fit the currently
active school curricula. In the post-Soviet educational market, Kiselev’s
“Geometry” continues to compete successfully with its own grandchildren.

What is the secret of such ageless vigor? There are several.

Kiselev himself formulated the following three key virtues of good text-
books: precision, simplicity, conciseness. And competence in the subject —
for we must, now add this fourth criterion, which could have been taken for
granted a century ago.

Acquaintance with programs and principles of math education being
developed by European mathematicians was another of Kiselev’s assets. In
his preface to the first edition of “Elementary Geometry,” in addition to
domestic and translated textbooks, Kiselev quotes ten geometry courses in
French and German published in the previous decade.

Yet another vital elixiv that prolongs the life of Kiselev’s work was the
continuous effort of the author himself and of the editors of later reprints to
improve and update the books, and to accommodate the teachers’ requests,
curriculum fluctuations and pressures of the 20th century classroom.

Last but not least, deep and beautiful geometry is the most efficient
preservative. Compared to the first texibook in this subject: the “Ele-
ments” [1], which was written by Buclid of Alezandria in the 3rd century
B.C., and whose spirit and structure are so faithfully represented in Kise-
lev’s “Geometry,” the latter is quite young.

Elementary geometry occupies a singular place in secondary education.
The acquiring of superb reasoning skills is one of those benefits from study-

1The numbers in brackets refer to the bibliography on p. 235.
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ing geometry whose role reaches far beyond mathematics education per se.
Another one is the unlimited opportunity for nurturing creative thinking
(thanks to the astonishingly broad difficulty range of elementary geome-
try problems that have been accumulated over the decades). Fine learning
habits of those who dared to face the challenge remain always at work for
them. A lack thereof in those who missed it becomes hard to compensate by
studying anything else. Above all, elementary geometry conveys the esgence
and power of the theoretical method in its purest, yet intuitively transparent
and aesthetically appealing, form. Such high expectations seem to depend
however on the appropriate framework: a textbook, a teacher, a culture.

In Russia, the adequate framework emerged apparently in the mid-
thirties, with Kiselev's books as the key component. After the 2nd World
War, couniries of Fastern Europe and the Peoples Republic of China,
adapted to their classrooms math textbooks based on Soviet programs.
Thus, one way or another, Kiselev's “Geometry” has served several gener-
ations of students and teachers in a substantial portion of the planet. It is
the time to make the book available to the English reader.

“Planimetry,” targeting the age group of current 7-9th-graders, pro-
vides a concise yet crystal-clear presentation of elementary plane geome-
try, in all its aspects which usually appear in modern high-school geome-
try programs. The reader’s mathematical maturity is gently advanced by
cormmentaries on the nature of mathematical reagoning distributed wisely
throughout the book. Student’s competence is reinforced by generously
supplied exercises of varying degree of challenge. Among them, straight-
edge and compass constructions play a prominent role, because, according
to the author, they are essential for animating the subject and cultivating
students’ taste. The book is marked with the general sense of measure (in
both selections and omissions), and non-cryptic, unambiguous language.
This makes it equally suitable for independent study, teachers’ professional
development, or a regular school classroom. The book was indeed designed
and tuned to be stable.

Hopefully the present adaptation retains the virtues of the original. I
tried to follow it pretty closely, alternating between several available ver-
sions (3, 4, 5, 7, 8] when they disagreed. Yet authenticity of translation
was not the goal, and I felt free to deviate from the source when the need
oceurred.

The most notable change is the significant extension and rearrangement
of exercise sections to comply with the US tradition of making textbook
editions self-contained (in Russia separate problem books are in fashion).

Also, I added or redesigned a few sections to represent material which
found its way to geometry curricula rather recently.

Finally, having removed descriptions of several obsolete drafting devices
(such as a pantograph), [ would like to share with the reader the following
observation.

In that remote, Kiselevian past, when Elementm*y- Gepmetry was the
most reliable ally of every engineer, the straightedge and compass were the
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main items in his or her drafting toolbox. The craft of blueprint draft-
ing has long gone thanks to the advance of computers. Consequently, all
267 diagrams in the present edition are produced with the aid of graphing
software Xfig. Still, Elementary Geometry is manifested in their design in
multiple ways. Obviously, it is inherent in all modern technologies through
the “custody chain”: Euclid — Descartes — Newton — Maxwell. Plausibly, it
awakened the innovative powers of the many scientists and engineers who
invented and created computers. Possibly, it was among the skills of the
authors of Xfig. Yet, symbolically enough, the most reliable way of draw-
ing a diagram on the computer screen is to use electronic surrogates of the
straightedge and compass and follow literally the prescriptions given in the
present book, often in the very same theorem that the diagram illustrates.
This brings us back to Euclid of Alexandria, who was the first to describe

the theorem, and to the task of passing on his culture. '

I believe that the book you are holding in your hands gives everyone a

* fair chance to share in the “custody.” This is my Magic Wand, and now I

can cast my spell.

Alexander Givental
Department of Mathematics
University of California Berkeley
April, 2006

Authors cited in this book:

Thales of Miletus 624 — 547 B.
Pythagoras of Samuos about 570 — 475 B.
Hippocrates of Chios . 470 — 410 B.
Plato 427 — 347 B.
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EBuclid of Alexandria about 325 — 265 B.
Archimedes of Syracuse 287 — 212 B.
Apollonius of Perga 262 — 199 B.
Heron of Alexandrin about 10 - 75 A
Claudius Ptolemy 85 — 165 A.D.
Zv Chongzhi 430 — 501 A.D.
al- Khwarizmi about 780 — 850 A.D.

SEeYo 1o Tt totos

René Descartes 1596 — 1650
Pierre Fermat 1601 — 1665
Isaac Newton 1643 — 1727
Robert Simson 1687 — 1768
Leonard Fuler 1707 — 17783
Carl Friedrich Gauss 1777 — 1855
Kaorl Wilhelm Feuerbach 1800 — 1834
James Clerk Mazwell 183%f — 1879
Richard Dedekind 1831 — 1916
Ferdinand Lindemann 1852 — 1934

Heinrich Hertz

1857 — 1894



Introduction

1. Geometric figures. The part of space occupied by a physical
object is called a geometric solid.

A geometric golid is separated from the surrounding space by a
surface.

A part of the surface is separated from an adjacent part by a
line.

A part of the line is separated from an adjacent part by a point.

The geometric solid, surface, line and point do not exist sepa-
rately. However by way of abstraction we can consider a swrface
independently of the geometric solid, a line — independently of the
surface, and the point — independently of the line. In doing so we
should think of & surface as having no thickness, a line — as having
neither thicknegs nor width, and a point — as having no length, no
width, and no thickness.

A set of points, lines, surfaces, or solids positioned in a certain
way in space is generally called a geometric figure. Geometric fig-
ures can move through space without change. Two geometric figures
are called congruent, if by moving one of the figures it is possi-
ble to superimpose it onto the other so that the two ﬁgares become
identified with each other in all their parts.

2. Geometry. A theory studying properties of geometric figures
is ¢called geometry, which translates from Greek as land-measuring.
This name was given to the theory because the main purpose of
geometry in antiguity was to measure distances and areas on the
Earth’s surface.

First concepts of geometry as well as their basic properties, are
introduced as idealizations of the corresponding common notions and
everyday experiences.

3. The plane. The most familiar of all surfaces is the flat sur-
face, or the plane. The idea of the plane is conveyed by a window

1



2 _ Introduction

pane, or the water surface in a quiet pond.

We note the following property of the plane: One can superimpose
a plane on itself or any other plane in a way that tokes one given
point to any other given point, and this can also be done after flipping
the plane upside down.

4. The straight line. The most simple line is the straight
line. The image of o thin thread stretched tight or a ray of light
emitted through a small hole give an idea of what a straight line is.
The following fundamental property of the straight line agrees well
with these images:

For every two points in space, there is a straight line passing
through them, and such o line is unique.
It follows from this property that:

If two straight lines are aligned with each other in such g way that
two points of one line coincide with two points of the other, then the
lines coincide in all their other points as well (because otherwise we
would have two distinct straight lines passing through the same two
points, which is impossible}.

For the same reason, fwo straight lines can inlersect at most af
one point.

A straight line can lie in a plane. The following holds true:

If o straight line passes through two points of a plane, then aoll
points of this line lie in this plane.

A o B c b D E
5 : —_— ;
Figure 1 Figure 2 Figure 3

5. The unbounded straight line. Ray. Segment. Thinking
of a straight line as extended indefinitely in both directions, one calls
it an infinite (or unbounded) straight line.

A straight line ig usually denoted by two uppercase letters mark-
ing any two points on it. One says “the line AB” or “BA” (I'igure
1). '

A part of the straight line bounded on both sides is called a
straight segment. Tt is usually denoted by two letters marking its
endpoints (the segment CD, Figure 2). Sometimes a straight line

‘or a segment is denoted by oune (lowercase) letter; one may say “the
straight line a, the segment b.”
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Usually instead of “unbounded straight line” and “straight seg-

2y

ment” we will simply say line and segment respectively.

Sometimes g straight line is considered which terminates in one
direction only, for instance at the endpoint F (Figure 3). Such a
straight line is called a ray (or half-line) drawn from FE.

6. Congruent and non-congruent segments. Two segments
are congruent if they can be laid one onto the other so that their
endpoints coincide. Suppose for example that we put the segment
AB onto the segment CD (Figure 4) by placing the point A at the
point C and aligning the ray AB with the ray CD. If, as a result
of this, the points B and D merge, then the segments AB and C'D
are congruent. Otherwise they are not congruent, and the one which
makes a part of the other is considered smaller,

A B C D

Figure 4

To mark on a line a segment congruent to & given segment, one
uses the compass, a drafting device which we assume familiar to the
reader.

7. Sum of segments. The sum of several given segments (AB,
CD, EF, Figure 5) is a segment which is obtained as follows. On
a line, pick any point M and starting from it mark a segment MN
congruent to AB, then mark the segments NP congruent to C'D,
and PQ congruent to EFF, both going in the same direction as M N.
Then the segment M@ will be the surm of the segments AB, CD and
EF (which are called summands of this sum). One can similarly
obtain the sum of any number of segments.

A B C B E F

M N P Q

Figure 5

The sum of segments has the same properties as the sum of num-
bers. In particular it does not depend on the order of the summands
(the commutativity law) and remains nnchanged when some of the
summands are replaced with their sum (the associativity law). For
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instance:
AB+CD 4+ EF =AB+EF 4+ CD=FF +CD+AB=...
and

AB+CD+EF=AB+(CD+EF)=CD+{AB+EF)=....

8. Operations with segments. The concept of addition of
segments gives rise to the concept of subtraction of segments, and
multiplication and division of segments by a whole number. For
example, the difference of AB and CD (if AB > CD) is a segment
whose sum with CD is congruent to AB; the product of the segment
AB with the number 3 is the sum of three segments each congruent
to AB; the quotient of the segment AB by the number 3 is a third
part of AB.

If given segments are measured by certain linear units (for in-
stance, centimeters), and their lengths are expressed by the corre-
sponding numbers, then the length of the sum of the segments is
expressed by the sum of the;numbers measuring these segments, the
length of the difference is expressed by the difference of the numbers,
atc.

9. The circle. If, getting the compass to an arbitrary step and,
placing its pin leg at some point O of the plane (Figure 6), we begin to
turn the compass around this point, then the other leg equipped with
a pencil touching the plane will describe on the plane a continuous
curved line all of whose points are the same distance away from O.
This curved line is called a circle, and the point O — its center.
A gegment (OA, OB, OC in Figure 6) connecting the center with a
point of the circle is called a radius. All radii of the same circle are
congruent to sach other.

Circles described by the compass set to the same radius are con-
gruent because by placing their centers at the same point one will
identify such circles with each other at all their points.

A line (M N, Figure 6} intersecting the circle at any two points
is called a secant.

A gegment (E'F) both of whose endpoints lie on the circle is called
a chord.

A chord (AD) passing through the center ig called a diameter.
A diameter is the sum of two radii, and.therefore all diameters of the
same circle are congruent to each other.

A part of a circle contained between any two points (for example,
EmF) is called an arc.
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The chord connecting the endpoints of an arc is said to subtend
this arc.
An arc is sometimes denoted by the sign 7 ; for instance, one

TN

writes: FmF.
The part of the plane bounded by a circle is called a disk.?

The part of a digk contained between two radii (the shaded part
COB in Figure 6) is called a sector, and the part of the disk cut off
by a secant (the part EmI") is called a disk segment.

10. Congruent and non-congruent arcs. Two arcs of the
same circle (or of two congruent circles) are congruent if they can
be aligned so that their endpoints coincide. Indeed, suppose that
we align the arc AB (Figure 7) with the arc CD by identifying the
point A with the point C and directing the arc AB along the arc
CD. If, as a result of this, the endpoints B and D coincide, then all

the intermediate points of these arcs will coincide as well, since they
Eat TN

are the same distance away from the center, and therefore AB=CD.
But if B and D do not coincide, then the arcs are not congruent, and
the one which is a part of the other is considered smaller.

11. Sum of arcs. The gsum of several given arcs of the same
radius is defined as an arc of that same radius which is composed
from parts congruent respectively to the given arcs. Thus, pick an
arbitrary point M (Figure 7} of the cixcle and mark the part MN

20ften the word “circle” is used instead of “disk.” However one should aveid
doing this since the use of the same term for different concepts may lead to
mistakes.
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congruent to AB. Next, moving in the same direction along the
circle, mark the part NP congruent to CD. Then the arc M P will
be the sum of the arcs AB and CD.

N
M

Figure 7

Adding arcs of the same’adius one may encounter the situation
when the sum of the arcs does not fit in the circle and one of the arcs
partially covers another. In this case the sum will be an arc greater
than the whole circle. For example, adding the arcs AmB and CnD
(Figure 8) we obtain the arc consisting of the whole circle and the
arc AD. :

A B n c A BC
D D
m n
Figure 8

-Similarly to addition of line segments, addition of arcs obeys the
commutativity and associativity laws.

From the concept of addition of arcs one derives the concepts
of subtraction of arcs, and multiplication and division of arcs by a -
whole number the same way as it was done for line segments.

12. Divisions of geometry. The subject of geometry can be
divided into two parts: plane geometry, or planimetry, and solid
geometry, or stereometry. Planimetry studies properties of those
geometric figures all of whose elements fit the-same plane.
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EXERCISES

1. Give examples of geometric solids bounded by one, two, three,
four planes (or parts of planes).

2. Show that if a geometric figure is congruent to another geometric
figure, which is in its turn congruent to a third geometric figure, then
the first geometric figure is congruent to the third.

3. Explain why two straight lines in space can intersect at most at
one point.

4. Referring to §4, show that a plane not containing a given straight
line can intersect it at most at one point.

5.% 3 Cive an example of a surface other than the plane which, like
the plane, can be superimposed on itself in a way that takes any one
given point to any other given point.

Remark: The required example is not unique.

6. Referring to §4, show that for any two points of a plane, there is a
straight line lying in this plane and passing through them, and that
such a line is unique.

7. Use a straightedge to draw a line passing through two points given
" on a sheet of paper. Figure out how to check that the line is really
straight.

Hint: Flip the straightedge upside down.

8.* Fold a sheet of paper and, using the previous problem, check that
the edge is straight. Can you explain why the edge of a folded paper
is gtraight? -

Remark: There may exist several correct answers to this question.
9. Show that for each point lying in a plane there is a straight line
lving in this plane and passing through this point. How many such
lines are there?

10. Find surfaces other than the plane which, like the plane, together
with each point lying on the surface contain a straight line passing
through this point.

Hint: One can obtain such surfaces by bending a sheet of paper.
11. Referring to the definition of congruent figures given in §1, show
that any two infinite straight lines are congruent; that any two rays
are congruent.

12. On & given line, mark a segment congruent to four times a given
segment, using a compass as few times as possible.

3Qtars * mark those exercises which we consider more difficult.
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13. Is the sum (difference) of given segments unique? Give an ex-
ample of two distinct segments which both are sums of the given
segrments. Show that these distinct segments are congruent.

14. Give an example of two non-congruent arcs whose endpoints co-
incide. Can such arcs belong to non-congruent circles? to congruent
circles? to the same circle?

15. Give examples of non-congruent arcs subtended by congruent
chords. Are there non-congruent chords subtending congruent arcs?

16. Describe explicitly the operations of subtraction of arcs, and
multiplication and division of an arc by a whole number.

17. Follow the descriptions of operations with arcs, and show that
multiplying a given arc by 3 and then dividing the result by 2, we
obtain an are congruent to the arc resulting from the same operations
performed on the given arc in the reverse order.

18. Can sums (differences) of respectively congruent line segments, -
or arcs, be non-congruent? Can sums (differences) of respectively
non-congruent segments, or arcs be congruent?

19. Following the definition of sum of segments or arcs, explain why

addition of segments (or arcs) obeys the commutativity law.
Hint: Identify a segment (or arc) AB with BA.
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Chapter 1

THE STRAIGHT LINE

1 Angles

13. Preliminary concepts. A figure formed by two rays drawn
from the same point is called an angle. The rays which form the
angle are called its sides, and their common endpoint is called the

vertex of the angle. One should think of the sides as extending away

from the vertex indefinitely.

Figure 9 Figure 10

An angle is usually denoted by three uppercase letters of which
the middle one marks the vertex, and the other two label a point on
each of the sides. One says, e.g.: “the angle AOB” or “the angle
BOA” (Figure 9). It is possible to denote an angle by one letter
marking the vertex provided that no other angles with the same
vertex are present on the diagram. Sometimes we will also denote
an angle by a number placed inside the angle next to its vertex.

9



10 Chapter 1. THE STRAIGHT LINE

The sides of an angle divide the whole plane containing the angle
into two regions. One of them is called the interior region of the
angle, and the other is called the exterior one. Usually the interior
region is congidered the one that contains the segments joining any
two peints on the sides of the angle, e.g. the points A and B on the
sides of the angle AOB (Figure 9). Sometimes however one needs
to consider the other part of the planse as the interior one. In such
cases a special comment will be made regarding which region of the
plane is considered interior. Both cases are represented separately in
Figure 10, where the interior region in each case is shaded.

Rays drawn from the vertex of an angle and lying in its interior
(OD, QFE, Figure 9) form new angles {AOD, DOE, EOB) which
are congidered to be parts of the angle (AQB).

In writing, the word “angle” is often replaced with the symbol Z.
For instance, instead of “angle AOB” one may write: LZAOB.

14. Congruent and non-congruent angles. In accordance
with the general definition of congruent figures (§1) two angles are
considered congruent if by m?'z)i?zg one of them it is possible to identify
it with the other.

Figure 11

Suppose, for example, that we lay the angle ACB onto the angle
A'O'B’ (Figure 11) in a way such that the vertex O coincides with O,
the side OB goes along OB/, and the interior regions of both angles
lie on the same side of the line O'B’. If OA turns out to coincide with
- O' A, then the angles are congruent. If O A turns out to lie inside or
outside the angle 4’0’ B’, then the angles are non-congruent, and the
one, that lies inside the other is said to be smaller.

15. Sum of angles. The sum of angles AOB and A'O’'B’ (Fig-
ure 12) is an angle defined as follows. Construct an angle MNP
congruent to the given angle AOB, and attach to it the angle PN Q,
congruent to the given angle A’C/B’, as shown. Namely, the angle



1. Angles 11

M N P should have with the angle PN(Q the same vertex N, a com-
mon side NP, and the interior regions of both angles should lie on
the opposite sides of the common ray NP. Then the angle M NQ is
called the sum of the angles AOB and A'O’B’. The interior region
of the sum is considered the part of the plane comprised by the inte-
rior regions of the summands. This region contains the common side
(NP) of the summands. One can similarly form the sum of three
and more angles.

B
(3]
O A
P
B,
?i//»/’XTJ/”!’::‘ N M

Figure 12

Addition of angles obeys the commutativity and associativity
laws just the same way addition of segments does. From the con-
cept of addition of angles one derives the concept of subtraction of
angles, and multiplication and division of angles by a whole number.

Figurs 13 Figure 14 Figure 15

Very often one has to deal with the ray which divides a given
angle into halves; this ray is called the bisector of the angle (Figure
13). '

16. Extension of the concept of angle. When one computes
the sum of angles some cases may occur which require special atten-
tlom.

(1) Tt is possible that after addition of several angles, say, the
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three angles: AOB, BOC and COD (Figure 14), the side QD of the -
angle COD will happen to be the continuation of the side OA of the
angle AOB. We will obtain therefore the figure formed by two half-
lines (OA and OD) drawn from the same point () and continuing
each other. Such a figure is also considered an angle and is called a
straight angle.

(2) Tt is possible that after the addition of several angles, say, the
five angles: AOB, BOC, COD, DOF and EQA (Figure 15} the side
OA of the angle FQA will happen to coincide with the side OA of
the angle AOB. The figure formed by such rays (together with the
whole plane surrounding the vertex ) is also considered an angle
and is called & full angle.

(3) Pinally, it is possible that added angles will not only fill in
the whole plane around the common vertex, but will even overlap
with each other, covering the plane around the common vertex for
the second time, for the third time, and so on. Such an angle sum is
congruent to one full angle added with another angle, or congruent

to two full angles added with another angle, and se on.
3

A B

A B D

Figure 16 Figure 17

17. Central angle. The angle (AO S, Figure 16) formed by two
radii of a eircle is called & central angle; such an angle and the arc
contained between the sides of this angle are said to correspond to
each ofther.

Central angles and their corresponding arcs have the following
properties. '
In one circle, or two congruent circles:

(1) If central angles are congruent, then the correspond-
ing arcs are congruent;

(2) Vice versa, if the arcs are congruent, then the corre-
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sponding central angles are congruent.

Let ZAOB = ZCOD (Figure 17); we need to show that the arcs
AB and CD are congruent too. Imagine that the sector AOB is
rotated about the center O in the direction shown by the arrow until
the radius O A coincides with OC. Then due to the congruence of
the angles, the radius OB will coincide with OD; therefore the arcs
AB and CD will coincide too, i.e. they are congruent.

The second property is established similarly.

18. Circular and angular degrees. Imagine that a circle is
divided into 360 congruent parts and all the division points are con-
nected with the center by radii. Then around the center, 360 central
angles ars formed which are congruent to each other as central angles
corresponding to congruent arcs. Each of these arcs is called a cir-
cular degree, and each of those central angles is called an angular
degree. Thus one can say that a circular degree is 1/360th part of
the cirele, and the angular degree is the central angle corresponding
to it.

The degrees (both circular and angular} are further subdivided
into 60 congrusnt parts called minutes, and the minutes are further
subdivided into 60 congruent parts called seconds.

A

D

Figure 18 Figure 19

19. Correspondence between central angles and arcs. Let
AQB be some angle (Figure 18). Between its sides, draw an arc CD
of arbitrary radiug with the center at the vertex O. Then the angle
AQOB will hecome the central angle corresponding to the are C'D.
Suppose, for example, that this arc consists of 7 eircular degrees
(shown enlarged in Figure 18). Then the radii connecting the divi-
sion points with the center obviously divide the angle AOB into 7
angular degrees. More generally, one can say that an angle is mea-
sured by the arc corresponding to i, meaning that an angle contains

as many-angular degrees, minutes and seconds as the corresponding
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arc contains circular degrees, minutes and seconds. For instance, if
the arc CD contains 20 degrees 10 minutes and 15 seconds of cir-
cular units, then the angle AOB consists of 20 degrees 10 minutes
and 15 seconds of angular units, which is customary to axpress as:
ZAOB = 20°10'15" using the symbols °, " and ” to denote degrees,
minutes and seconds respectively.

Units of angular degree do not depend on the radius of the circle.
Indeed, adding 360 angular degrees following the summation rule
described in §15, we obtain the full angle at the center of the circle.
Whatever the radius of the circle, this full angle will be the same.
Thus one can say that an angular degree is 1/360th part of the full
angle. :

20. Protractor. This device (Figure 19) is used for measuring
angles. It consists of a semi-disk whose arc is divided into 180°. To
measure the angle DCE, one places the protractor onto the angle
in & way such that the center of the semi-disk coincides with the
vertex of the angle, and the radins C'B lies on the side CE. Then
the number of degrees in the arc contained between the sides of the
angle DCE shows the medsure of the angle. Using the protractor
one can also draw an angle containing a given number of degrees (e.g.
the angle of 90°, 45°, 30°, ete.).

EXERCISES

20. Draw any angle and, using a protractor and a straightedge, draw
its bisector.

21. In the exterior of a given angle, draw another angle congruent
to it. Can you do this in the interior of the given angle?

22. How many common sides can two distinct angles have?

_ 28, Can two non-congruent angles contain 55 angular degress each?

24. Can two non-congruent arcs contain 55 circular degrees each?
What if these arcs have the same radius?

25. Two straight lines intersect at an angle cz}ntainizzg 25°. Find the .
measures of the ramaining three angles formed by these lines.

26. Three lines passing through the same point divide the plane
into six angles. Two of them turned out to contain 25° and 55°
respectively. Find the measures of the remaining four angles.

“27. Using only compass, construct a 1° arc on a circle, if a 19° arc

of this circle is given.
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2 Perpemdicular lines

21. Right, acute and obtuse angles. An angle of 90° (con-
gruent therefore to one half of the straight angle or to one quarter
of the full angle) is called a right angle. An angle smaller than the
right one is called acute, and a greater than right but smaller than
straight is called obtuse (Figure 20).

90°

right acute obtuse

Figure 20

All right angles are, of course, congruent to each other since they
contain the same number of degrees.

The measure of a right angle is sometimes denoted by d (the
initial letter of the French word droit meaning “right”).

22. Supplementary angles. Two angles (AOB and BOC, Fig-
ure 21) are called supplementary if they have one common side,
and their remaining two sides form continuations of each other. Since
the sum of such angles is a straight angle, the sum of fwo supplemen-
tary angles is 180° (in other words it is congruent to the sum of two
right angles). '

Figure 21 Figure 22

For each angle one can construct two supplementary angles. For
example, for the angle AOB (Figure 22), prolonging the side AQ we
obtain one supplementary angle BOC, and prolonging the side BO
we obtain another supplementary angle AQD. Two angles supple-
mentary to the same one are congruent to each other, since they both
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contain the same number of degress, namely the number that sup-
plements the number of degrees in the angle AOB to 180° contained
in a straight angle.

If AOB is & right angle (Figure 23), i.e. if it contains 90°, then
each of its supplementary angles COEB and AOD must also be right,
since it contains 180° — 90°, i.e. 90°. The fourth angle COD has to
be right as well, since the three angles AQB, BOC and ACD contain
270° altogether, and therefore what is left from 360° for the fourth
angle COD is 90° too. Thus, if one of the four angles formed by two

" intersecting lines (AC and BD, Figure 23) is right, then the other

three angles must be right as well.

23. A perpendicular and a slant. In the case when two
supplementary angles are not congruent to each other, their common
side (OB, Figure 24) is called a slant ! to the line (AC) containing
the other two sides. When, however, the supplementary angles are
congruent (Figure 25) and when, therefore, each of the angles is right,
the common side is called a perpendicular to the line containing
the other two sides. The common vertex (O) is called the foot of
the slant in the firgt case, and the foot of the perpendicular in
the second.

B

o .
o0 | 90° A o) C A e c

D

Figure 23 Figure 24 Figure 25

Two lines (AC and BD, Figure 23) intersecting at a right angle
are called perpendicular to each other. The fact that the line AC
is perpendicular to the line BD is written: AC 1 BD.

Remarks. (1) If a perpendicular to a line AC' {Figure 25) needs to .
be drawn through a point O lying on this line, then the perpendicular
is said to be “erected” to the line AC, and if the perpendicular.
needs to be drawn through a point B lying outside the line, then the
perpendicular is said to be “dropped” to the line (no matter if it is
upward, downward or sideways).

! Another name used for a slant is an oblique line.
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(2) Obviously, at any given point of a given line, on either side of
it, one can erect a perpendicular, and such a perpendicular is unique.

24. Let us prove that from any point lying outside a given
line one can drop a perpendicular to this line, and such
perpendicular is unigue.

Let a line AB (Figure 26) and an arbitrary point M outside the
line be given. We need to show that, first, one can drop a perpendic-
ular from this point to AB, and second, that there is only one such
perpendicular.

Imagine that the diagram is folded so that the upper part of it
iz identified with the lower part. Then the point M will take some
position N. Mark this position, unfold the diagram to the initial form
and then connect the points M and N by aline. Let us show now that
the resulting line M N is perpendicular to AB, and that any other
line passing through M, for example MD, is not perpendicular to
AB. For this, fold the diagram again. Then the point M will merge
with N agpin, and the points C' and D will remain in their places.
Therefore the line MC will be identified with NC, and MD with
ND. It follows that ZMCB = /BCN and LMDC = ZCDN.

But the angles MCB and BCN are supplementary. Therefore
each of them is right, and hence MN L AB. Since M DN is not a
straight line (because there can be no two straight lines connecting
the points M and N), then the sum of the two congruent angles
MDC and ¢/DN is not equal to 2d. Therefore the angle M DL/ is
not, right, and hence M D is not perpendicular to AB. Thus one can
drop no other perpendicular from the point M to the line AB.

Figure 26 Figure 27

25. The drafting triangle. For practical construction of a per-
pendicular to a given line it is convenient to use a drafting triangle
made to have one of its angles right. To draw the perpendicular to a
line AB {Figure 27) through a point { lying on this line, or through



18 Chapter 1. THE STRAIGHT LINE

a point D taken outside of this line, one can align a straightedge
with the line AB, the drafting triangle with the straightedge, and
then slide the triangle along the straightedge until the other side of
the right angle hits the point C or D, and then draw the line CE.
26. Vertical angles. Two angles are called vertical if the sides
of one of them form continuations of the sides of the other. For
instance, at the intersection of two lines AB and CD (Figure 28)

. two pairs of vertical angles are formed: AOD and COB, AOC and

DOB (and four pairs of supplementary angles).

Two vertical angles are congruent to each other (for ex-
ample, ZAOD = £BOC) since each of them is supplementary to the
same angle (to ZDOB or to LAOC), and such angles, as we have
seen (§22), are congruent to each other.

A D
c 2
2]
@)
?
A E
o

c B
Figure 28 Figure 29 Figure 30

27. Angles that have a common vertex. It is useful to re-
member the following simple facts about angles that have a common
VETTex:

(1) If the sum of several angles (AOB, BOC, COD, DOE, Figure
29) that have a common vertex is congruent to a straight a,ngle, then
the sum i3 2d, i.e. 180°.

(2) If the sum of several angles (AOB, BOC, COD, DOE, EQA,
Figure 30) that have a common vertex is congruent to the full angle,
then it is 4d, i.e. 360°.

(3) If two angles (AOB and BOC, Figure 24) have a common
vertex (O) and a common side (OB} and add up to 2d (ie. 180°),
then their two other sides (AO and QC} form continuations of each
other (i.e. such angles are supplementary).

EXERCISES

28. Ts the sum of the angles 14°24'44"” and 75°35'25” acute or obtuse?
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29. Five rays drawn from the same point divide the full angle into
five congruent parts. How many different angles do these five rays
form? Which of these angleés are congruent to each other? Which of
them are acute? Obtuse? Find the degree measure of each of them.

30. Can both angles, whose sum is the straight angle, be acute?
obtuse?

91. Find the smallest number of acute (or obtuse) angles which add
up to the full angle.

22, An angle measures 38°20’; find the measure of its supplementary
angles.

39. One of the angles formed by two intersecting lines is 2d/5. Find
the measures of the other three.

24. Find the measure of an angle which is congruent to twice its
supplementary one.

35. Two angles ABC and CBD havmg the common vertex B and
the common side BC are positioned in such a way that they do
not cover one another. The angle ABC = 100°20/, and the angle
CBD = 79°40. Do the sides AB and BD form a straight line or a
bent one?

96. Two distinct rays, perpendicular to a given line, are erected at
a given point. Find the measure of the angle between these rays.

37. In the interior of an obtuse angle, two perpendiculars to its sides
are erected at the vertex. Find the measure of the obtuse angle, if
the angle between the perpendiculars-is 4d/5.

Prove:

38. Bisectors of two supplementary angles are perpendicular to sach
other.

39. Bisectors of two vertical angles are continuations of each other.

40. If at a point O of the line AB (Figure 28) two congruent angles
AOD and BOC are built on the opposites sides of AB, then their
sides OD and OC' form a straight line.

41. If from the point O (Figure 28) rays OA, OB, OC and OD
are constructed in such a way that ZAOC = ZDOB and ZAQD =
ZCOB, then OB is the continuation of OA, and OD is the contin-
uation of OC.

Hint: Apply §27, statements 2 and 3.
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3 Mathematical propositions

28. Theorems, axioms, definitions. From what we have said
so far one can conclude that some geometric statements we consider
quite obvious (for example, the properties of planes and lines in §3
and §4) while some others are established by way of reasoning (for
example, the properties of supplementary angles in §22 and vertical
angles in §26). In geometry, this process of reasoning is a principal
way to discover properties of geometric figures. It would be instruc-
tive therefore to acquaint yourself with the forms of reasoning usual
in geometry. '

All facts established in geometry are expressed in the form of
propositions. These propositions are divided into the following types.

Definitions. Definitions are propositions which explain what
meaning one attributes to a name or expression. - For instance, we
have already encountered the definitions of central angle, right angle,
perpendicular lines, ete.

Axioms. Axioms 2 arg those facts which are accepted without
proof. This includes, for example, some propositions we encountered
earlier (§4): through any two points there is a unique line; if two
points of a line lie in a given plane then all points of this line lie in
the same plane.

Let us also mention the following axioms which apply to any kind
of quantities:

if each of two quantities is equal to a third quantity, then these
two quantities are equal to each other;

if the same quantity is added to or subtracted from equal guan-
tities, then the equality remains true;

if the same guantity is added te or subtracted from zmequa.l quan-
tities, then the inequality remains unchanged, i.e. the greater quan-
tity remains greater.

Theorems. Theorems are those propositions whose fruth is
found only through a certain reasoning process (proof). The fol-
lowing propositions may serve as examples:

if in one circle or two congruent circles some central angles are
congruent, then the corresponding arcs are congruent;

if one of the four angles formed by two intersecting lines turns
out to be right, then the remaining three angles are right as well.

2In geometry, some axioms are traditionally called postulates.
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Corollaries. Corollaries are those propositions which follow di-
rectly from an axiom or a theorem. For instance, it follows from the
axiom “there is only one line passing through two points” that “two
lines can intersect at one point at most.”

29. The content of a theorem. In any theorem one can distin-
guish two parts: the hypothesis and the conclusion. The hypothesis
expresses what is congidered given, the conclusion what is required
to prove. For example, in the theorem “if central angles are con-
gruent, then the corresponding arcs are congruent” the hypothesis
is the first part of the theorem: “if central angles are congruent,”
and the conclusion is the second part: “then the corresponding arcs
are congruent;” in other words, it is given (known to us) that the
central angles are congruent, and it is required to prove that under

this hypothesis the corresponding arcs are congruent.

The hypothesis and the conclusion of a theorem may sometimes
consist of several separate hypotheses and conclusions; for instance,
in the theorem “if a number is divisible by 2 and by 3, then it is
divisible by 6,” the hypothesis consists of two parts: “if a number is
divisible by 2” and “if the number is divisible by 3.”

It is useful to notice that any theorem can be rephrased in such
a way that the hypothesis will begin with the word “if,” and the
conclusion with the word “then.” For example, the theorem “vertical
angles are congruent” can be rephrased this way: “if two angles are
vertical, then they are congruent.”

30. The converse theorem. The theorem converse (o a given
theorem is obtained by replacing the hypothesis of the given theorem
with the conclugion (or some part of-the conclusion), and the con-
_clusion with the hypothesis (or some part of the hypothesis) of the
given theorem. For instance, the following two theorems are converse
to each other:

If central angles are congru- If ares are congruent, then
ent, then the corresponding arcs  the porresponding central angles
are congruent. are congruent.

If we call one of these theorams direct, then the other one should
be called converse.

In this example both theorems, the direct and the converse one,
turn out to be true. This is not always the case. For example the
theorem: “if two angles are vertical, then they are congruent” is true,
but the converse statement: “if two angles are congruent, then they
are vertical” is false.
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Indeed, suppose that in some angle the bisector is drawn (Figure
13). It divides the angle into two smaller ones. These smaller angles
are congruent to each other, but they are not vertical.

EXERCISES

42. Formulate definitions of supplementary angles (§22) and vertical
angles (§26) using the notion of sides of an angle.

43. Find in the text the definitions of an angle, its vertex and sides,
in terms of the notion of a ray drawn from a point.

44" In Introduction, find the definitions of a ray and a straight seg-
ment in terms of the notions of a siraight line and a point. Are there
definitions of a point, line, plane, surface, geometric solid? Why?
Remark: These are examples of geometric notions which are consid-
ered undefinable.

45. 1Is the following proposition from §6 a definition, axiom or theo-
rem: “Two segments are congruent if they can be laid one onto the
other so that their endpoints coincide”?

46. In the text, find the deflnitions of a geometric figure, and congru-
ent geometric figures. Are there definitions of congruent segments,
congruent arcs, congruent angles? Why?

47. Definge a circle.

48. Formulate the proposition converse to the theorem: “If a number
is divisible by 2 and by 3, then it is divisible by 6.” Is the converse
proposition true? Why?

49. In the proposition from §10: “Two arcs of the same circle are
congruent if they can be aligned so that their endpoints coincide,”
separate the hypothesis from the conclusion, and state the converse
proposition. Is the converse proposition true? Why?

50. In the theorem: “Bisectors of supplementary angles are perpen-
dicular,” separate the hypothesis from the conclusion, and formulate
the converse-proposition. Is the converse proposition true?

51. Give an example that disproves the proposition: “If the bisectors
of two angles with a common vertex are perpendicular, then the
angles are supplementary.” Is the converse proposition true?

4 Polygons and triangles

31. Broken lines. Straight segments not lying on the same line
are said to form a broken line (Figures 31, 32) if the endpoint of the



4. Polygons and triangles 23

first segment is the beginning of the second one, the endpoint of the
second segment is the beginning of the third one, and so on. These
segments are called sides, and the vertices of the angles formed by
the adjacent segments vertices of the broken line. A broken line is
denoted by the row of letters labeling its vertices and endpoints; for
ingtance, one says: “the broken line ABCDE.”

A broken line is called convex if it lies on one side of each of
its segments continued indefinitely in both directions. For example,
the broken line shown in Figure 31 is convex while the one shown in
Figure 32 is not (it lies not on one side of the line BC).

Figure 31 Figure 32

A broken line whose endpoints coincide is called closed (e.g. the
lines ABCDE or ADCBE in Figure 33). A closed broken line may
have self-intersections. For instance, in Figure 33, the line ADC'BE
is self-intersecting, while ABCDFE is not.

c

ta

Figure 33

32. Polygons. The figure formed by a non-self-intersecting
closed broken line together with the part of the plane bounded by
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this line is called a polygon (Figure 33). The sides and vertices
of this broken line are called respectively sides and vertices of
the polygon, and the angles formed by each two adjacent sides (in-
terior) angles of the polygon. More precisely, the interior of a
polygon’s angle is considered that side which contains the interior
part of the polygon in the vicinity of the vertex. For instance, the
angle at the vertex P of the polygon M NPQRS is the angle greater
than 2d (with the interior region shaded in Figure 33). The broken
line itself is called the boundary of the polygon, and the segment
congruent to the sum of all of its sides -—— the perimeter. A half of
the perimeter is often referred to as the semiperimeter.

A polygon is called convex if it is bounded by a convex broken
line. For example, the polygon ABCDE shown in Figure 33 is convex
while the polygon A NPQRS is not. We will mainly consider convex
polygons.

Any segment (like AD, BE, MR, ..., Figure 33) which connects
two vertices not belonging to the same side of a polygon is called a
diagonal of the polygon.

The smallest number of sides in a polygon is three. Polygons are
named according to the number of their sides: triangles, quadri-
laterals, pentagons, hexagons, and so on.

The word “triangle” will often be replaced by the symbol A.

33. Types of triangles. Triangles are classified by relative
lengihs of their sides and by the magnitude of their angles. With
respect to the lengths of sides, triangles can bhe scalene (Figure 34)
— when all three sides have different lengths, isosceles (Figure 35)
— when two sides are congruent, and equilateral (Figure 36) —
when all three sides are congruent.

Figure 34 Figure 35 Figure 36

With respect to the magnitude of angles, triangles can be acute
(Figure 34) — when all three angles are acute, right (Figure 37) —
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when among the angles there is a right one, and obtuse (Figure 38)
— when among the angles there is an obtuse one. 3

Figure 37 Figure 38

In a right triangle, the sides of the right angle are called legs,
and the side opposite to the right angle the hypotenuse.

34. Important lines in a triangle. One of a triangle’s sides
is often referred to as the base, in which case the opposite vertex is
called the vertex of the triangle, and the other two sides are called
lateral. Then the perpendicular dropped from the vertex to the base
or to its continuation is called an altitude. Thus, if in the triangle
ABC (Figure 39), the side AC is taken for the base, then B is the
vertex, and BD is the altitude.

B

Figure 39

The segment (BE, Figure 39) connecting the vertex of a triangle
with the midpoint of the base is called a median. The segment (BF)
dividing the angle at the vertex into halves is called a bisector of
the triangle (which generally Speaklng differs from both the median
and the altitude).

3We will see in §43 that a triangle may have at most one right or obtuse angle.
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Any triangle has three altitudes, three medians, and three bi-
sectors, since each side of the triangle can take on the role of the
base.

In an isosceles triangle, usually the side other than each of the
two congruent ones is called the base. Respectively, the vertex of an
isosceley triangle is the vertex of that angle which is formed by the
congruent sides.

EXERCISES

52. Four points on the plane are vertices of three different quadri-
laterals. How can this happen?

53. Can a convex broken line self-intersect?

54. Is it possible to tile the entire plane by non-overlapping polygons
all of whose angles contain 140° each?

55. Prove that each diagonal of a quadrilateral either lies entirely in
its interior, or entirely in its exterior. Give an example of a pentagon
for which this is false. )

56. Prove that a closed convex broken line is the boundary of a
polygon.

57. Is an equilateral triangle considered isosceles? Is an isosceles
triangle considered scalene?

58.* How many intersection points can three straight lines have?

59. Prove that in a right triangle, three altitudes pass through a
commaon point.

60. Show that in any triangle, every two mediang intersect. Is the
same true for every two bisectors? altitudes?

61. Give an example of a triangle such that only one of its altitudes
lies in its imterior.

5 Isosceles triangles and symmetry

35. Theorems.

(1) In an isosceles triangle, the bisector of the angle at
the vertex 13 at the same time the median and the altitude.

(2) In an isosceles triangle, the angles at the base are
congruent.

Let AABC (Figure 40) be isosceles, and let the line BD be the
bisector of the angle B at the vertex of the trisngle. It is required to
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prove that this bisector BD is also the median and the altitude.

Imagine that the diagram is folded along the line 2D so that
LABD falls onto ZCBI. Then, due to congruence of the angles 1
and 2, the side AB will fall onto the side C'B, and due to congruence
of these sides, the point A will merge with €. Therefore DA will
coincide with DC, the angle 3 will coincide with the angle 4, and the
angle 5 with 6. Therefore

DA=DC, /£3=/4, and /5= /6.

It follows from DA = DC that BD is the median. It follows from
the congruence of the angles 3 and 4 that these angles are right, and
hence BD is the altitude of the triangle. Finally, the angles 5 and 6
at the base of the triangle are congruent.

B

Figure 40

36. Corollary. We see that in the isosceles triangle ABC (Fig-
ure 40) the very same line B} possesses four properties: it is the
bisector drawn from the vertex, the median to the bage, the altitude
dropped from the vertex to the base, and finaily the perpendicular
erected from the base at its midpoint.

Since each of these properties determines the position of the line
BD unambiguously, then the validity of any of them implies all the
others. For example, the altitude dropped to the base of an isosceles
triangle is at the same time its bisector drawn from the vertez, the
median to the base, and the perpendicular erected atl its midpoint.

37. Axial symmetry. If two points (A and A/ Figure 41) are
situated on the opposite sides of a line @, on the same perpendicular
to this line, and the same distance away from the foot of the perpen-
dicular (i.e. if AF is congruent to F'A’), then such points are called
symmetric about the line a.
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Two figures (or two parts of the same figure) are called symmetric
about a line if for each point of one figure (A, B, C, D, E, ..., Figure
41} the point symmetric to it about this line ( A, B, ¢, D, F/, ...)
belongs to the other figure, and wvice versa. A figure is said to have
an axis of symmetry « if this figure is symmetric to itself about
the line a, i.e. if for any point of the figure the symmetric point also
belongs to the figure.

B a B’ B
A F /\ A"
E £ M F M
c o A D C
1
Figure 41 . Figure 42

For example, we have seen that the isosceles triangle ABC (Fig-
ure 42) is divided by the bisector B into two triangles (left and
right) which can be identified with each other by folding the dia-
gram along the bisector. One can conclude from this that whatever
point is taken on the left half of the isosceles triangle, one can always
find the point symmetric to it in the right half. For instance, on the
side AR, take a point M. Mark on the side BC the segment BM'
congruent to BM. We obtain the point M’ in the triangle symmet-
ric to M sbout the axis BD. Indeed, AMBAM' is isosceles since
BM = BM'’ Let F denote the intersection point of the segment
M A" with the bisector BD of the angle B. Then BK is the bisector
in the isosceles triangle M BA1". By §35 it is also the altitude and the
median. Therefore M M’ is perpendicular to BD, and MF = M'F,
i.e. M and M’ are situated on the opposite sides of BD, on the same
perpendicular to BD, and the same distance away from its foot F.
Thus in an isosceles triangle, the bisector of the angle at the
- vertex is an axis of symmetry of the triangle.

. 38.Remarks. (1) Two symmetric figures can be superimposed
by rotating one of them in space about the axis of symmetry until
the rotated figure falls into the original plane again. Conversely, if
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two figures can be identified with each other by turning the plane
in space about a line lying in the plane, then these two figures are
symmetric about this line.

(2) Although symmetric figures can be superimposed, they are
not identical in their position in the plane. This should be understood
in the following sense: in order to superimpose two symmetric figures
it is necessary to flip one of them around and therefore to pull it off
the plane temporarily; if however a figure is bound to remain in the
plane, no motion can generally speaking identify it with the figure
symmetric to it about a line. For example, Figure 43 shows two pairs
of symmetric letters:“b” and “d,” and “p” and “q.” By rotating the
letters inside the page one can transform “b” into “q,” and “d” into
“p,” but it is impossible to identify “D” or “q ‘with “d” or “p”
without lifting the symbols off the page.

(3} Axial symmetry is frequently found in nature (Figure 44).

Figure 43 Figure 44

EXERCISES

62. How many axes of symmetry does an equilateral triangle have?
How about an isosceles triangle which is not equilateral?

63.* How many axes of symmetry can a quadrilateral have?

64. A kite is a quadrilateral symmetric about a diagonal. Give an
example of: {a) a kite; (b) a quadrilateral which is not a kite but has
an axis of symmetry.

65. Can a pentagon have an axis of symmetry passing through two
(one, none) of its vertices?

66.* Two points A and B are given on the same side of a line MN.
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Find a point C on M N such that the line M N would make congruent
angles with the sides of the broken line ACB.

Prove theorems:

6°7. In an isosceles triangle, two medians are congruent, two bisectors
are congruent, two altitudes are congruent.

68. If from the midpoint of each of the congruent sides of an isosceles
triangle, the segment perpendicular te this side is erected and con-
tinued to its intersection with the other of the congruent sides of the
triangle, then these two segments are congruent.

69. A line perpendicular to the bisector of an angle cuts off congruent
segments on its sides.

70. An equilateral triangle is equiangular (i.e. all of its angles are
congruent).

71. Vertical angles are symmetric to each other with respect to the
bisector of their supplementary angles.

72. A triangle that has two axes of symmetry has three axes of
symmetry. ,

73. A quadrilateral is a kite if it has an axis of symmetry passing
through a vertex.

74. Diagonals of a kite are perpendicular.

6 Congruence tests for triangles

39. Preliminaries. As we know, two geometric figures are called
congruent if they can be identified with each other by superimposing.
Of course, in the identified triangles, all their corresponding elements,
such as sides, angles, altitudes, medians and bisectors, are congruent.
However, in erder to ascertain that two triangles are congruent, there
is no need to establish congruence of all their corresponding elements.
It suffices only to verify congruence of some of them.

40. Theorems. *

(1) SAS-test: If two sides and the angle enclosed by them
i one triangle are congruent respectively to two sides and.
the angle enclosed by them in another triangle, then such
triangles are congruent.

(2) ASA-test: If one side and two angles adjacent to it in
one triangle are congruent respectively to one side and two

“SAS stands for “side-angle-side”, ASA for “angle-side-angle, and of course
388 for “side-side-side.”
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angles adjacent to it in another triangle, then such triangles
are congruent.

(3) SSS-test: If three sides of one triangle are congruent
respectively to three sides of another triangle, then such
triangles are congruent.

A , A’

c , B L B’

Figure 45

(1) Let ABC and A'B’C’ be two triangles (Figure 45) such that
AC = A'C', AB=A'B, /A= /A

It is required to prove that these triangles are congruent.

Superimpose AABC onto AA'B'C’ in such a way that A would
coincide with A’ the side AC would go along A’C’, and the side AB
would lie on the same side of A’C’ as A’B’. ° Then: since AC is
congruent to A’CY, the point C will merge with '; due to congruence
of /A and £ 4/, the side AB will go along A’ B/, and due to congruence
~of these sides, the point B will merge with B Therefore the side
B( will coincide with B/C’ (since two points can be joined by only
one line),.and hence the entire triangles will be identified with each
other. Thus they are congruent.

(2) Let ABC and A'B'C’ (Figure 46) be two triangles such that
/C=/0". /B=/B, CB=C'B

It is required to prove that these triangles are congruent. Superim-
pose AABC onto AA’B'C’ in such a way that the point ' would
coincide with ¢, the side €B would go along C’B’, and the vertex A
would lie on the same side of C'B’ as A\ Then: since CB is congru-
ent to (' B, the point B will merge with B, and due to congruence of

5For this and some other operations in this section it might be necessary to
flip the triangle over.
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the angles B and B', and C and ', the side BA will go along B'A’,
and the side CA will go along C’A" Since two lines can intersect
only at one point, the vertex A will have to merge with A Thus the
triangles are identified and are therefore congruent.

A A’

C B o B

Figure 46

(3) Let ABC and A'B’'C’ be two triangles such that
AB=A'B', BC=BC', CA=C'4'"

It is required to prove that these triangles are congruent. Proving
this test by superimposing, the same way as we proved the first
two tests, turns out to be awkward, because knowing nothing about
the measure of the angles, we would not be able to conclude from
coincidence of two corresponding sides that the other sides coincide
ag well. Instead of superimposing, let us apply juztaposing.

Juxtapose AABC and AA'B’'C’ in such a way that their congru-
ent sides AC and A'C’ would coincide (i.e. A would merge with A’
and C with €7), and the vertices B and B’ would lie on the oppo-
site sides of A'C". Then AABC will occupy the position AA’B"C’
(Figure 47). Joining the vertices B’ and B” we obtain two isosceles
triangles B'A’B" and B'C’' B” with the common base B'B”. But in an
isosceles triangle, the angles at the base are congruent (§35). There-
fore /1 = /2 and /3 = £4, and hence ZA'B'C' = ZAB'C' = /B.
But then the given triangles must be congruent, since two sides and
the angle enclosed by them in one triangle are congruent respectively
to two sides and the angle enclosed by them in the other triangle.

Remark. In congruent triangles, congruent angles are opposed-
to congruent sides, and conversely, congruent sides are opposed to
congruent angles.

The congruence tests just proved, and the skill of recognizing
congruent triangles by the above criteria facilitate solutions to many
~geometry problems and are necessary in the proofs of many theo- -
rems. These congruence tests are the principal means in discovering
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properties of complex geometric figures. The reader will have many
occagions to see this.

Figure 47

EXERCISES

75. Prove that a triangle that has two congruent angles is isosceles.

76. In a given triangle, an altitude is a bisector. Prove that the
triangle is isogceles.

77. In a given triangle, an altitude is a median. Prove that the
triangle is isosceles.

78. On each side of an equilateral triangle ABC, congruent segments
AB', BC', and A(Y are marked, and the points A, B, and C’ are
connected by lines. Prove that the triangle A'B'C’ is also equilateral.
79. Suppose that an angle, its bisector, and one side of this angle in
one triangle are respectively congruent to an angle, its bisector, and
one side of this angle in another triangle. Prove that such triangles
are congruent.

80. Prove that if two sides and the median drawn to the first of
them in one triangle are respectively congruent to two sides and the
median drawn to the first of them in another triangle, then such
triangles are congruent.

81. Give an example of two non-congruent triangles such that two
sides and one angle of one triangle are respectively congruent to two
sides and one angle of the other triangle.

82.* On one side of an angle A, the segments AB and AC are marked,
and on the other side the segments AB’ = AB and AC' = A(. Prove
that the lines BC’ and B'C meet on the bisector of the angle A.
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83. Derive from the previous problem a method of constructing the
bisector using straightedge and compass.

84. Prove that in a convex pentagon: (a) if all sides are congruent,
and all diagonalg are congruent, then all interior angles are congru-
ent, and (b) if all sides are congruent, and all interior angles are
congruent, then all diagonals are congruent.

85. Is this true that in a convex polygon, if all diagonals are congru-
ent, and all interior angles are congruent, then all sides are congru-
ent?

7 Inequalities in triangles

41. Exterior angles. The angle supplementary to an angle of
a triangle (or polygon) is called an exterior angle of this triangle

{polygzon).

Figure 48 Figure 49

For instance (Figure 48}, ZBCD, ZCBE, /BAF are exterior
angles of the triangle ABC. In contrast with the exterior angles, the
angles of the triangle {polygon) are sometimes called interior.

For each interior angle of a triangle (or polygon), one can con-
struct two exterior angles (by extending one or the other side of the
angle). Such two exterior angles are congruent since they are vertical.

42. Theorem. An exierior angle of a triangle is greater
than each interior angle not supplementary to ii.

For example, let us prove that the exterior angle BCD of AABC_
(Figure 49) is greater than each of the interior angles A and B not
supplementary to it.

Through the midpoint F of the side BC, draw the median AFE

‘and on the continuation of the median mark the segment EF con-
gruent to AE. The point F will obviously lie in the interior .of the
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angle BCD. Connect F with C' by a segment. The triangles ABE
and EFC (shaded in Figure 49) are congruent since at the vertex £
they have congruent angles enclosed between two respectively con-
gruent sides. From congruence of the triangles we conclude that the
angles B and ECF, opposite to the congruent sides AE and EF,
gre congruent too. But the angle ECF forms a part of the exterior
angle BCD and is therefore smaller than ZBCD. Thus the angle B
is smaller than the angle BCD.

By continuing the side BC past the point ¢ we obtain the exterior
angle ACH congruent to the angle BCD. If from the vertex B, we
draw the median to the side AC and double the median by continuing
it past the side AC, then we will similarly prove that the angle A is
smaller than the angle ACH, i.¢. it is smaller than the angle BOD.

B B

A 0qc b A ¢ D

Figure 50 Figure 51

43. Corollary. If in a triangle one angle is right or obtuse, then
the other two angles are acute.

Indeed, suppose that the angle Cin AABC (Figure 50 or 51) is
right or obtuse. Then the supplementary to it exterior angle BC'D
has to be right or acute. Therefore the angles A and B, which by the
theorem are smaller than this exterior angle, must both be acute.

44. Relationships between sides and angles of a triangle.
Theorems. In any triangle

(1) the angles opposite to congruent sides are congruent;
(2) the angle opposite to a grealer side is greater.

(1) If two sides of a triangle are congruent, then the triangle is
isosceles, and therefore the angles opposite to these sides have to be
congruent as the angles at the base of an isosceles triangle (§35).

(2) Let in AABC (Figure 52) the side AB be greater than BC.
It is required to prove that the angle C is greater than the angle A.

On the greater side BA, mark the segment BD congruent to the
smaller side BC and draw the line joining D with C. We obtain an
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isosceles triangle DBC, which has congruent angles at the base, i.e.
£BDC = ZBCD. But the angle BDC, being an exterior angle with
respect to AADC, is greater than the angle A, and hence the angle
BCD is also greater than the angle A. Therefore the angle BCA
containing ZBCD as its part is greater than the angle 4 too.

B

Figure 52

45. The converse theprems. In any iriangle
(1) the sides opposite to congruent angles are congruent;
(2) the side opposite to a greater angle is greater.

(1) Let in AABC the angles A and C be congruent (Figure 53);
it is required to prove that AB = BC.

B B

Figure 53 Figure 54

Suppose the contrary is true, i.e. that the sides AB and BC are
not congruent. Then one of these sides is greater than the other,
and therefore according to the direct theorem, one of the angles A
and C has to be greater than the other. But this contradicts the
hypothesis that LA = ZC. Thus the assumption that 4B and BC

“gre non-congruent is impossible. This leaves only the possibility that
AB = BC.
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(2) Let in AABC-(Figure 54) the angle C be greater than the
angle A. It is required to prove that AB > BC.

Suppose the contrary is true, i.e. that AB is not greater than
B, Then two cases can oceur; either AB = BC or AB < BC.

According to the direct theorem, in the first case the angle C
would have been congruent to the angle A, and in the second case the
angle C would have been smaller than the angle A. Either conclusion
contradicts the hypothesis, and therefore both cases are excluded.
Thus the only remaining possibility is AB > BC.

Corollary.

(1) In an equilateral triangle all angles are congruent.
(2) In an equiangular triangle all sides are congruent.

46. Proof by contradiction. The method we have just used
to prove the converse theorems is called proof by contradiction,
or reductio ad absurdum. In the beginning of the argument the
assumption contrary to what is required to prove is made. Then by
reasoning on the basis of this assumption one arrives at a contradic-
tion (absurd). This result forces one to reject the initial assumption
and thus to accept the one that was required to prove. This way of
reasoning is frequently used in mathematical proofs.

47. A remark on converse theorems. It is a mistake, not
uncommon for beginning geometry students, to assume that the con-
verse theorem is automstically established whenever the validity of
a direct theorem has been verified. Hence the false impression that
proof of converse theorems is unnecessary at all. As it can be shown
by examples, like the one given in §30, this conclusion is erroneous.

- Therefore converse theorems, when they are valid, require separate

proofs.
However; in the case of congruerice or non-congruence of two sides

of a triangle ABC, c.g. the sides AB and BC, only the following
three cases can oceur: _

AB=BC, AB> BC, AB < BC.

Each of these three cases excludes the other two: say, if the first
case AB = BC takes place, then neither the 2nd nor the 3rd case
is possible. In the theorem of §44, we have considered all the three
eases and arrived at the following respective conclusions regarding
the opposite angles C and A:

/C =LA, /C>LA, LC < ZA
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Each of these conclusions excludes the other two. We have also seen
in §45 that the converse theorems are true and can be easily proved
by reductio ad absurdum.

In general, if in a theorem, or several theorems, we address all pos-
sible mutually exclusive cases (which can occur regarding the magni-
tude of a certain quantity or disposition of certain parts of a figure},
and it turns out that in these cases we arrive at mutually execlusive
conclusions (regarding some other quantities or parts of the figure),
then we can claim a priori that the converse propositions also hold
frue.

We will encounter this rule of convertibility quite often.

48. Theorem. In a triangle, each side is smaller than the
sum of the other two stdes.

If we take a side which is not the greatest one in a triangle, then
of course it will be smaller than the sum of the other two sides.
Therefore we need to prove that even the greatest side of a triangle
is smaller than the sum of the other two sides.

In AABC (Figure 55), let the greatest side be AC. Continuing
the side AB past B mark on it the segment BD = BC and draw
DC. Since ABDC is isosceles, then ZD = /D{'B. Therefore the
angle DD is smaller than the angle DCA, and hence in AADC the
side AC is smaller than AD (§45), i.e. AC < AB+ BD. Replacing
BD with BC we get

AC < AB + BC.

Corollary. From both sides of the obtained inequality, subtract
AB or BC:

AC — AB < BC, AC —-B(C < AB.

Reading these inequalities from right to left we see that each of the
sides BC and AB is greater than the difference of the other two sides.
Obviously, the same can also be said about the greatest side AC, and
therefore in o triangle, each side is greoter than the difference of the
other two sides.

Remarks. (1) The inequality described in the thecrem is often
called the triangle inequality.

(2} When the point B lies on the segment AC, the triangle in-
equality turns into the equality AC = AB + B(. More generally, if
three points lie on the same line {and thus do not form a triangle},
then the greatest of the three segments connecting these points is the
sum of the other two segments. Therefore for any three points it is
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still true that the segment connecling two of them is smaller
than or congruent to the sum of the other two segments.

b c
B
B
A E
D
Figure 55 Figurg 56

49. Theorem. The line segment connecting any two points
18 smaller than any broken line connecling these points.

If the broken line in question congists of only two sides, then the
theorem has already been proved in §48. Consider the case when the
broken line consists of more than two sides. Let AE (Figure 56) be
the line segment connecting the points A and E, and let ABCDE be
a broken line connecting the same points. We are required to prove
that AFE is smaller than the sum AB+ BC+CD 4+ DE.

Connecting A with € and D and using the triangle inequality we
find:

AE < AD+ DE, AD<AC+CD, AC < AB+ BC.
Morecover, these inequalities cannot turn into equalities all at once.
Indeed, if this happened, then (Figure 57) 17 would lie on the segment

AE, C on AD, B on AB, i.e. ABCDE would not be a broken line,
but the straight segment AE. Thus adding the inequalities termwise

B AE=AD+DE B ap=acrcp AC=AB+BC
ANISYA S
;N/ E A —F &  E

c

Figure 57

and subtracting AD and AC from both sides we get

AE < AB+BC+CD+ DE.
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50. Theorem. If two sides of one triangle are congruent
respectively to two sides of another triangle, then:

(1) the greater angle contained by these sides is opposed
to the greater side;

(2) vice versa, the greater of the non-congruenti sides is
opposed to the greater angle.

2’ ST

Figure 58

{1) In AABC and AA,B'C’, we are given:
AB=AB", AC=AC', LA> /LA

We are required to prove that BC > B'C’. Put AA'B'C’ onto
AABC in a way (shown in Figure 58) such that the side A'C’ would
coincide with AC. Since LA’ < ZA, then the side A’ B’ will lie inside
the angle A. Let AA'B'C’ occupy the position AB”C (the vertex
B’ may fall outside or inside of AABC, or on the side B, but the
forthcoming argument applies to all these cases). Draw the bisector
AD of the angle BAB" and connect D with B”. Then we obtain two
triangles ABD and DAB"” which are congruent because they have a
common side AD, AB = AB" by hypothesis, and ZBAD = ZBAD"
by construction. Congruence of the triangles implies BD = DB
From ADCB" we now derive: B"C < B"D + D( (§48). Replacing
B"D with BD we get

B"C <« BD + DC, and hence B'C’ <« BC.

(2) Suppose in the same triangles ABC and A’ B’C’ we are given
that AB = A'B, AC = A'C' and BC > B’C’; let us prove that
LA> LA

Assume the contrary, i.e. that the ZA is not greater than ZA'
" Then two cases can occur: either ZA = ZA or LA < ZA" In the
first case the triangles would have been congruent (by the SAS-test)
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and therefore the side BC would have been congruent to B'C, which
contradicts the hypotheses. In the second case the side BC would
have been smaller than B'C’ by part (1) of the theorem, which con-
tradicts the hypotheses too. Thus both of these cases are excluded;
the only case that remains possible is ZA > £A'

EXERCISES

86. Can an exterior angle of an isosceles triangle be smaller than the
supplementary interior angle? Consider the cases when the angle is:
(a) at the base, and (b) at the vertex.

87. Can a triangle have sides: (a) 1, 2, and 3 c¢m (centimeters) long?
(b) 2, 3, and 4 c¢m long? .

88. Can a quadrilateral have sides: 2, 3, 4, and 10 c¢m long?

Prove theorems:

89. A side of a triangle is smaller than its semiperimeter.
90. A median of a triangle is smaller than its semiperimeter.

91.* A median drawn to a side of a triangle is smaller than the
semisum of the other two sides.

Hint: Double the median by prolonging it past the midpoint of the
first side.

92. The sum of the medians of a triangle is smaller than its perimeter
but greater than its semi-perimeter.

93. The sum of the disgonals of a quadrilateral is smaller than its
perimeter but greater than its semi-perimeter.

94. The sum of segments connecting a point inside a triangle with
its vertices is smaller than the semiperimeter of the triangle.

95.* Given an acute angle XOY and an interior point A. Find a
point B on the side OX and a point C on the side OY such that the
perimeter of the triangle ABC is minimal.

Hint: Introduce points symmetric to A with respect to the sides of
the angle.

8 Right triangles

51. Comparative length of the perpendicular and a slant.

Theorem. The perpendicular dropped from any point to a
line is smaller than eny slant drawn from the same point
to this line.
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Let AB (Figure 59) be the perpendicular dropped from a point
A to the line M N, and AC be any slant drawn from the same point
A to the line M N. It is required to show that AB < AC.

In AAEC, the angle B is right, and the angle C is acute (§43).
Therefore ZC < £B, and hence AB < A(, as required.
Remark. By “the distance from a peint to a line,” one means the

shortest distance which is measured along the perpendicular dropped
from this point to the line.

A A
M - N M B N
c B C B D E
b |
Figure 5% Figure 60

52. Theorem. If the perpendicular and some slants are
drawn to o line from the same point outside this line, then:

(1) if the feet of the slants are the same distance away
from the foot of the perpendicular, then such slants are con-
gruent;

(2) if the feet of two slants are not the same distance
away from the fool of the perpendicular, then the slant
whose foot is farther away from the foot of the perpendicu-
lar 15 gréoter.

(1) Let AC and AD (Figure 60) be two slants drawn from a
point A to the line MN and such that their feet C and D are the
same distance away from the foot B of the perpendicular AB, i.e.
CB = BD. It is required to prove that AC = AD.

In the triangles ABC and ABD, AB is a common side, and
beside this BC = BD (by hypothesis) and LZABC = ZABD (asright
angles). Therefore these triangles are congruent, and thus AC = AD.

(2) Let AC and AFE (Figure 59) be two slants drawn from the
point A to the line A/ N and such that their feet are not the same

“distance away from the foot of the perpendicular; for instance, let
BE > BC. It is required to prove that AF > AC. -
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Mark BD = BC and-draw AD. By part (1), AD = AC. Com-
pare AE with AD. The angle ADE is exterior with respect to
AABD and therefore it is greater than the right angle. Therefore
the angle ADF is cbtuse, and hence the angle AED must be acute
(§43). It follows that ZADE > LAED, therefore AE > AD, and
thus AE > AC.

53. The converse theorems. If some slanits and the per-
pendicular are drawn to a line from the same point outside
this line, then:

(1) if two slants are congruent, then their feet are the
same distance away from the foot of the perpendicular;

(2) if two slants are not congruent, then the foot of the
greater one is farther away from the fool of the perpendic-
wlor.

We leave it to the readers to prove these theorems (by the method
of reductio ad absurdum).

54. Congruence tests for right triangles. Since in right |
triangles the angles contained by the legs are always congruent as
right angles, then right iriangles are congruent:

(1) if the legs of one of them are congruent respectively to the legs
of the other;

(2} if a leg and the acute angle adjacent to it in one iriangle are
congruent respectively to a leg and the acute angle adjacent to it in
the other iriangle.

These two tests require no special proef, since they are particular
cases of the general SAS- and ASA-tests. Let us prove the following
two tests which apply to right triangles only.

55. Two tests requiring special proofs.

Theoremsg. Two right iriangles are congruent: '

(1) if the hypotenuse and an acute angle of one triangle
are congruent to respectively the hypolenuse and an acule
angle of the other.

(2) if the hypoternuse and a leg of one triangle are con-
gruent respectively to the hypotenuse and a leg of the other.

(1) Let ABC and A1 B1Cy (Figure 61) be two right triangles such
that AB = A1 B and £A = ZA;y. It is required to prove that these
triangles are congruent.

- Put AABC onto AA1B1C1 in & way such that their congruent
hypotenuses coincide. By congruence of the angles A and A;, the
leg AC will go along A1C1. Then, if we assume that the point C
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occupies a position Cy or (3 different from Cj, we will have two
perpendiculars (B1C; and B1Cy, or BiC) and B;Cj3) dropped from
the same point B’ to the line A’C”. Sinee this is impossible (§24), we
conclude that the point ¢ will merge with €.

B B, B8 B,
A c A, c,C G A C A, A, A, C
Figure 61 Figure 62

(2) Let (Figure 62), in the right triangles, it be given: AB = 4; B,
and BC = B1C;. It is required to prove that the triangles are congru-
ent. Put AABC onto AApB;C) in a way such that their congruent
legs BC and B1Cy coincide. By congruence of right angles, the side
C' A will go along C1A1. Then, if we assume that the hypotenuse AB
occupies a position A9B1 or AsB; different from A1 B1, we will have
two congruent slants (41581 and AyB, or 418 and A3B)) whose
feet are not the same distance away from the foot of the perpendic-
ular B1C;. Sinece this is impossible (§53) we conclude that AB will
be identified with A18;.

EXERCISES

Prove theorems:

96. Each leg of a right triangle is smaller than the hypotenuse.

97. A right triangle can have at most one axis of symmetry.

98. At most two congruent slants to a given line can be drawn from
a given point.

99.7 Two isosceles triangles with a common verfex and congruent
lateral sides cannot fit one inside the other.

100. The bisector of an angle is its axis of symmetry.

101. A triangle is isosceles if two of its altitudes are congruent.
102. A median in & triangle is equidistant from the two vertices not

“lying on it.

103.* A line and a circle can have at most two common points.
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9 Segment and angle bisectors

56. The perpendicular bisector, i.e. the perpendicular to a seg-
ment erected at the midpoint of the ségment, and the bisector of an
angle have very similar properties. To see the resemblance better we
will describe the properties in a parallel fashion.

(1) If a point (K, Fig-
ure 63} lies on the perpen-
dicular (MN) erected at the
midpoint of o segment (AB),
then the point is the same
distance cway from the end-
points of the segmeni (ie.
KA =KDB).

Since MN 1 AB and AQ =
OB, AK and KB are slants to
AB, and their feet are the same
distance away from the foot of

the perpendicular. Therefore
KA=KB.
M
K
Oh
A B
N
Figure 63

(2) The converse theorem.
If a point (K, Figure 63) is the
same distance away from
the endpoints of the seg-
ment AB (ie. if KA = KB),
then the point lies on the
perpendicular to AB passing
through its midpoind.

(1) If a peint (K, Figure
64) lies on the bisector (OM)
of an angle (AOB), then the
pomt ts the same distance
away from the sides of the
angle (i.e. the perpendiculars
KD and KC are congruent).

Since QA4 bisects the angle,
the right triangles OCK and
ODK are congruent, as they
have the common hypotenuse
and congruent acute angles at
the vertex O. Therefore KC =
KD.

M

Figﬁr@ 64

(2) The converse theorem.
If an interior point of an
angle (K, Figure 64) is the
same distance away from iis
sides (i.e. if the perpendicu-
lars K'C and K D are congruent)
then it lies on the bisecior
of this angle.
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Through K, draw the line
MN 1 AB. We get two right
triangles K AO and K BO which
are congruent as having congru-
ent hypotenuses and the com-
mon leg K (2. Therefore the line
MN drawn through X to be
perpendicular to AB bisects it.

Through O and K, draw
the line OM. Then we get
two right triangles OCK and
ODK which are congruent as
having the common hypotenuse
and the congruent legs CK and
DK. Hence they have congru-
ent angles at the vertex O, and
therefore the line OM drawn to
pass through K bisects the angle
AOB.

57. Corollary. From the two proven theorems (direct and con-
verse) one can also derive the following theorems:

If a point does not lie on
the perpendicular erected at the
midpoint of & segment then the
point is unequal distonces’ away
from the endpoinits of this seg-
mendt.

If an interior point of an an-
gle does not lie on the ray bisect-
ing i, then the point is unequal
distances away from the sides of
this angle.

We leave it to the readers to prove these theorems (using the

method reductio ad absurdum).

58. Geometric locus. The geometric locus of points satis-

fying a certain condition is the curve (or the surface in the space)
or, more generally, the set of points, which contains all the points
gatigfying this condition and contains no points which do not satisfy
it. ,

For ingtance, the geometric locus of points at a given distance r
from a given point ' is the circle of radius r with the center at the
point C. As it follows from the theorems of §56, §57:

The geometric locus of points equidistant from twe given points
is the perpendicular fo the segment connecting these poinis, passing
through the midpoint of the segment.

The geometric locus of interior points of an angle equidistant from
its sides is the bisector of this angle.

59. The inverse theorem. If the hypothesis and the conclusion
of a theorem are the negations of the hypothesis and the conclusion
- of another theorem, then the former theorem is called inverse to the
latter one. For instance, the theorem inverse to: “if the digit sum
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is divisible by 9, then the number is divisible by 9” is: “if the digit
sum is not divisible by 9, then the number is not divisible by 9.”

It is worth mentioning that the validity of a direct theorem does
not guarantee the validity of the inverse one: for example, the inverse
proposition “if not every summand is divisible by a certain number
then the sum is not divisible by this number” is false while the direct
proposition is true.

The theorem described in §57 (both for the segment and for the
angle) is inverse to the (direct) theorem described in §56.

60. Relationships between the theorems: direct, con-
verse, inverse, and contrapositive. For better understanding
of the relationship let us denote the hypothesis of the direct theorem
by the letter A, and the conclusion by the letter B, and express the
theorems concisely as:

(1) Direct theorem: if A is true, then B is true;

(2) Converse theorem: if B is true, then A is true;

(3) Inverse theorem: if A is false, then B is false;

(4) Contrapositive theorem: if B is false, then A is false.

Considering these propositions it is not hard to notice that the
first one is in the same relationship to the fourth as the second one to
the third. Namely, the propositions (1) and (4) can be transformed
into each other, and so can the propositions (2) and (3). Indeed, from
the proposition: “if A is true, then B is true” it follows immediately
that “if B is false, then A is false” (since if A were true, then by
the first proposition B would have been true too); snd wvice versa,
from the proposition: “if B is false, then A is false” we derive: “if
A is true, then B is true” (since if B were false, then A would have
been false as well). Quite similarly, we can check that the second
proposition follows from the third one, and vice verse.

Thus in order to make sure that all the four theorems are valid,
there is no need to prove each of them separately, but it suffices to
prove only two of them: direct and converse, or direct and inverse.

EXERCISES

104. Prove as a direct theorem that a point not lying on the perpen-
dicular bisector of & segment is not equidistant from the endpoints
of the segment; namely it is closer to that endpoint which lies on the
same side of the bisector.

105. Prove as a direct theorem that any interior point of an angle
which does not lie on the bisector is not equidistant. from the sides
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of the angle.

106. Prove that two perpendiculars to the sides of an angle erected
at equal distances from the vertex meet on the bigector.

107. Prove that if A and A/, and B and B’ are two pairs of points
symmetric about some line XY, then the four points A, A, B!, B lie
on the same circle.

108. Find the geometric locus of vertices of isosceles triangles with
a given base. .

109. Find the geometric locus of the vertices A of triangles ABC
with the given base BC and such that ZB > ZC.

110. Find the geometric locus of points equidistant from two given
intersecting infinite straight lines.

111.* Find the geometric locus of points equidistant from three given
infinite straight lines, intersecting pairwise.

112. For theorems from §60: direct, converse, inverse, and contra-
positive, compare in which of the following four cases each of them
is true: when (a) A is true and B is true, (b) A is true but B is false,
(¢} A is false but B is truey and (d) A is false and B is false.

113. By definition, the negation of a proposition is true whenever
the proposition is false, and false whenever the proposition is true.
State the negation of the proposition: “the digit sum of every mul-
tiple of 3 is divisible by 9.” Is this proposition true? Iz its negation
true?

114. Formulate affirmatively the negations of the propositions:
(2) in every quadrilateral, both diagonals lie inside it; (b) in ev-
ery quadrilateral, there is a diagonal that lies inside it; (c) there
is a quadrilateral whose both diagonals lie inside it; (d} there is a
quadrilateral that has a diagonal lying outside it. Which of these
propositions are true?

- 10 Basic construction problems

61. Preliminary remarks. Thecrems we proved earlier allow
us to solve some construction problems. Note that in elementary
geometry one considers those constructions which can be performed
using only straightedge and compass. ©

62. Problem 1. To. construct a triangle with the given
three sides a, b and c (Figure 65). :

SAs we will see, the use of the drafting triangle, which can be allowed for
saving time in the actual construction, is unnecessary in principle.
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On any line M N, mark the segment CB congruent to one of the
given sides, say, a. Describe two arcs centered at the points C' and
B of radii congruent to b and to ¢. Connect the point A, where these
arcs intersect, with B and with C. The required triangle is ABC.

M ] N

Figure 65

Remark. For three segments to serve ag sides of a triangle, it is
necessary that the greatest one is smaller than the sum of the other
two (§48).

63. Problem 2. To construct an angle congruent to the
given angle ABC and such that one of the sides is a given

line M N, and the vertex is at a point O given on the line
{(Figure 66).

Figure 66

Between the sides of the given angle, describe an arc EF of any
radius centered at the vertex B, then keeping the same setting of the
compass place its pin leg at the point O and describe an arc PQ.
Furthermore, describe an arc ab centered at the point P with the ra-
dius equal to the distance between the points F and ¥. Finally draw
a line through (0 and the point R (the intersection of the two arcs).
The angle ROP is congruent to the angle ABC because the triangles
ROP and FBE are congruent as having congruent respective sides.

64. Problem 3. To bisect a given angle (Figure 67), or in
other words, to construct the bisector of a given angle or to
draw its axris of symmelry.
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Between the sides of the angle, draw an arc DE of arbitrary
radiug centered at the vertex B. Then, setting the compass to an
arbitrary radius, greater however than half the distance between D
and E (see Remark to Problem 1), describe two arcs centered at D
and E so that they intersect at some peint F. Drawing the line BF
we obtain the bisector of the angle ABC.

For the proof, connect the point F' with D and E by segments. We
obtain two triangles BEF and BDF which are congruent since BF
is their common side, and BD = BE and DE = EF' by construction.
The congruence of the triangles implies: ZABF = Z{/BF.

Figure 67 Figure 68

65. Problen 4. From a gz'-'ven' point C on the line AB, to
erect a perpendicular to this line (Figure 68).

On both sides of the point C on the line AE, mark congruent
segments CD and CE (of any length). Describe two arcs centered
at D and F of the same radius (greater than C'IJ) so that the arcs
intersect at a point F. The line passing through the points C and F'
will be the required perpendicular.

Indeed, as it is evident from the construction, the point F' will
have the same distance from the points [ and E; therefore it will lie
on the perpendicular to the segment AB passing through its midpoint
(§56). Since the midpoint is C, and there is only one line passing
through ¢ and F', then F'C L DE.

66. Problem 5. From a given point A, to drop a perpen-
dicular to a given line BC (Figure 69).

Draw an arc of arbitrary radius (greater however than the dis-
tance from A to BC} with the center at A so that it intersects BC
at some points D and F. With these points as centers, draw two
arcs of the same arbitrary radius (greater however than $DE) so
~that they intersect at some point F. The line AF is the reqmred
perpendicular.
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Indeed, as it is evident from the construction, each of the points
A and F is equidistant from D and E, and all such points lie on
the perpendicular to the segment AB passing through its midpoint

(§58).

A7 C
A B
\D E/ "
g  —1 c
=X
34
o

Figure 69 Figure 10

67. Problem 6. To draw the perpendicular to o given seg-
ment AB through its midpoint (Figure 70); in other words, fo
construct the axris of symmetry of the segment AB.

Draw two arcs of the same arbitrary radius (greater than %AB},
centered at A and B, so that they intersect each other at some points
C and D. The line CD is the required perpendicular.

Indeed, as it is evident from the construction, each of ,the points
C and D is equidistant from A and B, and therefore must lie on the
symmetry axis of the segment AB.

Problem 7. To bisect a given straight segment (Figure 70).
It is solved the same way as the previous problem.

68. Example of a more complex problem. The basic con-
structions allow one to solve more complicated construction prob-
lems. As an illustration, consider the following problem.

Problem. 7o construct a triangle with a given base b, an angle
« at the base, and the sum s of the other two sides {Figure 71). To
work out a solution plan, suppose that the problem has been solved,
i.c. that a triangle ABC has heen found such that the base AC = b,
ZA = o and AB + BC = s. Examine the obtained diagram. We
know how to construct the side AC congruent to & and the angle 4
congruent to «. Therefore it remains on the other side of the angle
to find a point B such that the sum AB 4+ BC is congruent to s.
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Continuing AB past B, mark the segment AD congruent to s. Now
the problem reduces to finding on AD a point B which would be the
same distance away from C and D. As we know (§58), such a point
must lie on the perpendicular to CD passing through its midpoint.
The point will be found at the intersection of this perpendicular with
AD.

)
Figure 71

Thus, here is the solution of the problem: construct (Figure 71)
the angle A congruent to «. On its sides, mark the segments AC = b
and AD = s, and connect the point D with C. Through the midpoint
of CD, construct the perpendicular BE. Connect its intersection
with AD, i.e. the point B, with C. The triangle ABC is a solution
of the problem since AC = b, ZA =« and AB + BC = s (because
BD = BC).

Examining the construction we notice that it is not always pos-
sible. Indeed, if the sum s is too small compared to b, then the
perpendicular £B may miss the segment AD {or intersect the con-
tinuation of AD past A or past D). In this case the construction
turns out impossible. Moreover, independently of the construction
procedure, one can see that the problem has no solution if s < b or
s = b, because there is no triangle in which the sum of two sides is
smaller than or congruent to the third side.

In the case when a solution exists, it turns out to be unique, ie.
there exists only one triangle, 7 satisfying the requirements of the

_ "There are infinitely many triangles satisfying the requirements of the problem,
but they are all congruent to each other, and so it is customary to say that the
solution of the problem is unique.
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problem, since the perpendicular BE can intersect AD at one point
at most.

69. Remark. The previous example shows that sclution of a
complex construction problem should consist of the following four
stages.

(1) Assuming that the problem has been solved, we can draft
the diagram of the required figure and, carefully examining it, try
to find those relationships between the given and required data that
would allow one to reduce the problem to other, previously solved
problems. This most important stage, whose aim is to work out a
plan of the solution, is called analysis.

(2) Once a plan has been found, the construction following it
can be executed.

(3) Next, to validate the plan, one shows on the basis of known
theorems that the constructed figure does satisfy the requirements
of the problem. This stage is called synthesis.

(4) Then we ask ourselves: if the problem has a solution for
any given data, if a solution is unique or there are several ones,
are there any special cases when the construction simplifies or, on
the contrary, requires additional examination. This solution stage is
called research.

When a problem is very simple, and there is no doubt about possi-
bility of the solution, then one usually omits the analysis and research
stages, and provides only the construction and the proof. This was
what we did describing our solutions of the first seven problems of
this section; this is what we are going to do later on whenever the
problems at hand will not be too complex.

EXERCISES

Construct:

115. The gum of two, three, or more given angles.
116. The difference of two angles. |
117. Two angles whose sum and difference are given.
118. Divide an angle into 4, 8, 16 congruent parts.

119. A line in the exterior of a given angle passing through its vertex -
and such that it would form congruent angles with the sides of this
angle.

120. A triangle: (a) given two sides and the angle between them;
(b) given one side and both angles adjacent to it; {c) given two sides
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and the angle opposite to the greater one of them; (d) given two sides
and the angle opposite to the smaller one of them (i this case there
can be two solutions, or one, or none).

121. An isosceles triangle: (a) given its base and another side;
(b) given its base and a base angle; (c) given its base angle and
the opposite side.

122. A right triangle: (a) given both of its legs; (b) given one of the
legs and the hypotenuse; (c) given one of the legs and the adjacent
acute angle. ‘
123. An isosceles triangle: (a) given the altitude to the base and
one of the congruent sides; (b) given the altitude to the base and the
angle at the vertex; (¢) given the basc and the altitude to another
side.

124. A right triangle, given an acute angle and the hypotenuse.
125. Through an interior point of an angle, construct a line that
cuts off congruent segments on the sides of the angle.

126. Through an exterior point of an angle, construct a line which
would cut off congruent ségments on the sides of the angle.

127. Find two segments whose sum and difference are given.

128. Divide a given segment into 4, 8, 16 congruent parts.

129. On a given line, find & point equidistant from two given points
(outside the line).

130. Find a point equidistant from the three vertices of a given
triangle.

181. On a given line intersecting the sides of a given angle, find a
point equidistant from the sides of the angle.

132. Find a point equidistant from the three sides of a given triangle.

133. On an infinite line AB, find a point C such that the rays CM
and CN connecting € with two given points M and N situated on
the same side of AB would form congruent angles with the rays C'A
and C B respectively.

134. Construct a right triangle, given one of its legs and the sum of
the other leg with the hypotenuse.

185. Construct a triangle, given its base, one of the angles adjacent
to the base, and the difference of the other two sides (consider two
cases: (1) when the smaller of the two angles adjacent to the base is
given; (2) when the greater one is given).

"~ 136. Construct a right triangle, given one of its legs and the differ-
ence of the other two sides.
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137. Given an angle A and two points B and C situated one on one
side of the angle and one on the other, find: (1) a point M equidistant
from the sides of the angle and such that M B = MC; (2) a point
N equidistant from the sides of the angle and such that NB = BC;
(3) a point P such that each of the points B and C' would be the
same distance away from A and P.

138. T'wo towns are situated near a straight railroad line. Find the
position for a railroad station so that it is equidistant from the towns.

139. Given a point A on one of the sides of an angle B. On the
other side of the angle, find a point C such that the sum CA+ CB
is congruent to a given segment.

11 Parallel lines

70. Definitions. Two lines are called parallel if they lie in
the same plane and do not intersect one another no matter how far
they are extended in both directions.

In writing, parallel lined are denoted by the symbol ||. Thus, if
two lines AB and CD are parallel, one writes AB||CD.

Existence of parallel lines is established by the following theorem.

71. Theorem. Two perpendiculars (AB and CD, Figure 72)
to the same line (M N) cannot intersect no matter how far
they are extended.

P

/N

Figure 72

Indeed, if such perpendiculars could intersect at some point P,
“then two perpendiculars to the line M N would be dropped from this
point, which is impossible (§24). Thus two perpendiculars to the
same line are parallel to each other.
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72. Names of angles formed by intersection of two lines
by a transversal. Let two lines AB and CD (Figure 73) be inter-
sected by a third line MN. Then 8 angles are formed (we labeled
them by numerals) which carry pairwise the following names:

corresponding angles: 1 and 5, 4 and 8, 2 and 6, 3 and 7;

alternate angles: 3 and 5, 4 and 6 (interior); 1 and 7, 2 and &
(exterior);

same-side angles: 4 and 5, 3 and 6 (interior); 1 and 8, 2 and 7
{exterior).

Figure 73

73. Tests for parallel lines. When two lines (AB and CD,
Figure 74} are intersected by a third line (MN), and it turns
out that:

(1) some corresponding angles are congruent, or
(2} some alternate angles are congruent, or

(3) the sum of some same-side interior or same-side
exterior angles is 2d,

then these two lines are parallel.

Suppose, for example, that the corresponding angles 2 and 6 are
congruent. We are required to show that in this case AB||CD. Let us
assume the contrary, i.e. that the lines AB and CD are not parallel.
Then these lines intersect at some point P lying on the right of M N
or at some point P’ lying on the left of M N. If the intersection is at
P, then a triangle is formed for which the angle 2 is exterior, and the
angle 6 interior not supplementary to it. Therefore the angle 2 has to
be greater than the angle 6 {§42), which contradicts the hypothesis.
Thus the lines AB and CD cannot intersect at any point P on the
" right of A4 N. If we assume that the intersection is at the point P
then a triangle is formed for which the angle 4, congruent to the
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angle 2, is interior and the angle 6 is exterior not supplementary to
it. Then the angle 6 has to be greater than the angle 4, and hence
greater than the angle 2, which contradicts the hypothesis. Therefore
the lines AB and C'D cannot intersect at a point lying on the left
of MN either. Thus the lines cannot intersect anywhere, i.e. they
are parallel. Similarly, one can prove that AB||CD if Z1 = Z5, or
3 = /7, ete.

M D
M F
: A 1/2 B 2
4/3
P’ P
c 8/7 D !
A E ¢ B
N
Figure 74 Figure 75

Suppose now that £44+ /45 = 2d. Then we conclude that Z4 = Z6
since the sum of angle 6 with the angle 5 ig also 2d. But if £4 = Z6,
then the lines AB and CD cannot intersect, since if they did the
angles 4 and 6 (of which one would have been exterior and the other
interior not supplementary to it) could not be congruent.

74. Problem. Through a given point M (Figure 75), to construct
a line parallel to a given line AB.

A simple solution to this problem consists of the following. Draw
an arc CD of arbitrary radius centered at the point M. Next, draw
the arc M E of the same radius centered at the point C. Then draw
a small arc of the radius congruent to M E centered at the point
so that it intersects the arc CD at some point F'. The line M F will
be parallel to AB.

Figure 76
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To prove this, draw the auxiliary line MC. The angles 1 and
2 thus formed are congruent by construction (because the iriangles
EMC and MCF are congruent by the SSS-test), and when alternate
angles are congruent, the lines are parallel.

For practical construction of parallel lines it is also convenient to
use a drafting triangle and a straightedge as shown in Figure 76.

Figure 77 Figure 78

75. The parallel postulate. Through a given point, one
cannot draw two different lines parallel to the same line.

Thus, if (Figure 77) CE|AB, then no other line CE' passing
through the point C can be parallel to AB, i.e. CE' will meet AB
when extended.

It turns out impossible to prove this proposition, i.e. to derive it
as a consequence of earlier accepted axioms. It becomes necessary
therefore to accept it as a new assumption (postulate, or axiom).

M 5 M
! H
V £ B A E B
Al
2 2]
c /F D C F D
N
Figure 79 Figure B0

76. Corollary. (1) If CE|AB (Figure 77), and o third line CE'
intersects one of these two parallel Enes, then it intersects the other
as well, because otherwise there would be two different lines CE and
O F' passing through the same point C' and parallel to AB, which is
impossible.
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(2) If each of two lines a and b (Figure 78) is parallel to the same
third line ¢, then they are parallel o each other.

Indeed, if we assume that the lines 2 and b intersect at some point
M, there would be two different lines passing through this point and
parallel to ¢, which is impossible.

77. Angles formed by intersection of parallel lines by a
transversal.

Theorem {converse to Theorem of §73). If two parallel lines
{AB and CD, Figure 79) are intersected by any line (MN),
thern:

(1) corresponding angles are congruent;

(2) alternate angles are congruent;

(3} the sum of same-gide interior angles is 2d;

(4) the sum of same-side exterior angles is 2d.

Let us prove for example that if AB||CD, then the corresponding

~ angles a and b are congruent.

Assume the contrary, i.e. that these angles are not congruent (let
us say £1 > £2). Constructing /M FEB' = /2 we then obtain a line
A’B’ distinet from AB and have therefore two lines passing through
the point ¥ and parallel to the same line CD. Namely, AB||CD by
the hypothesis of the theorem, and A’B’||C D due to the congruence
of the corresponding angles M EB' and 2. Since this contradicts the
parallel postulate, then our assumption that the angles 1 and 2 are
not congruent must be rejected; we are left to accept that £1 = £2.

Other conclusions of the theorem can be proved the same way.

Corollary. A perpendicular to one of two parallel lines iz per-
pendicular to the other one as well.

- Indeed, if AB||CD (Figure 80) and ME | AB, then firstly ME,
which intersects AB, will also intersect C'D at some point F, and
secondly the corresponding angles 1 and 2 will be congruent. But
the angle 1 is right, and thus the angle 2 is also right, i.e. ME L CD.

78. Tests for non-parallel lines. From the two theorems: di-
rect (§73) and its converse (§75), it follows that the inverse
theorems also hold true, ie.:

If two lines are intersected by a third one in a way such that
(1) corresponding angles are not congruent, or {2) aliernate interior
angles are not congruent, etc., then the two lines are not parallel;

If two lines nre not parallel and are intersected by a third one,
then (1) corresponding angles are not congruent, (2) alternate interior
angles are not congruent, etc. Among all these tests for non-parallel
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lines (which are easily proved by reductio ad absurdum), the following
one deserves special attention:

If the sum of two same-side interior angles (1 and 2, Fig-
ure 81) differs from 2d, then the two lines when extended far
enough will intersect, since if these lines did not intersect, then
they would be parallel, and then the sum of same-side interior angles
would be 2d, which contradicts the hypothesis.

/v
|/

¥

This proposition {supplemented by the statement that the lines
intersect on that side of the transversal on which the sum of the same-
side interior angles is smaller than 2d) was accepted without proof
by the famous Greek geometer Euclid (who lived in the 3rd century
B.C.) in his Elements of geometry, and is known as Euclid’s pos-
tulate. Later the preference was given to a simpler formulation: the
parallel postulate stated in §75.

Figure 81

A C

8|1\ /2\p

Figure 82 Figure 83

Let us point cut two more tests for non-parallelism which will be
used later on:
(1) A perpendicular (AB, Figure 82) and a slant (CD) to
the same line (EF) intersect each other, because the sum of
same-side interior angles 1 and 2 differs from 2d.
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(2) Two lines (AB and CD, Figure 83) perpendicular to two
intersecting lines (FE and F'G) intersect as well.

Indeed, if we assume the contrary, i.e. that AB|CD, then the
line F' D, being perpendicular to one of the parallel lines (C'D), will
be perpendicular to the other {AB), and thus two perpendiculars
from the same point F' to the same line A8 will be dropped, which
is impossible.

79. Angles with respectively parallel sides.

Theoren. If the sides of one angle are respectively parallel
to the sides of another angle, then such angles are either
congruent or add up to 2d.

5/2 3
-1—46 i
;{
Tl -
Figure 84

Consider separately the following three cases (Figure 84).

(1) Let the sides of the angle 1 be respectively parallel to the
sides of the angle 2 and, beside this, the directions of the respective
sides, when counted away from the vertices (as indicated by arrows
on the diagram), happen to be the same.

Extending one of the sides of the angle 2 until it meets the non-
parallel to it side of the angle 1, we obtain the angle 3 congruent
to each of the angles 1 and 2 {as corresponding angles formed by a
transversal intersecting parallel lines). Therefore /1 = Z2.

{2) Let the sides of the angle 1 be respectively parallel to the
sides of the angle 2, but the respective sides have opposite directions
away from the vertices.

Extending both sides of the angle 4, we obtain the angle 2, which
is congruent to the angle 1 (as proved sarlier) and to the angle 4 {as
vertical to it). Therefore /4 = ~1.

(3) Finally, let the sides of the angle 1 be respectively parallel to
the sides of the angles 5 and 6, and one pair of respective sides have
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the same directions, while the other pair, the opposite ones.

Extending one side of the angle 5 or the angle 6, we obtain the an-
gle 2, congruent (as proved earlier) to the angle 1. But
Z5(or £6) + £2 = 2d (by the property of supplementary angles).
Therefore /5(or £6) + £1 = 2d too.

Thus angles with parallel sides turn out to be congruent when the
directions of respective sides away from the vertices are either both
the same or both opposite, and when neither condition is satisfied,
the angles add up to 24. '

Remark. One could say that two angles with respectively parallel
sides are congruent when both are acute or both are obtuse. In some
cases however it i3 hard to determine a priori if the angles are acute
or obtuse, so comparing directions of their sides becomes necessary.

Figure 85

80. Angles with respectively perpendicular sides.

Theorem. If the sides of one angle are respectively per-
pendicular to the sides of another one, then such angles are
either congruent or add up to 2d.

Let the angle ABC labeled by the number 1 (Figure 85) be one
of the given angles, and the other be one of the four angles 2, 3, 4,

5 formed by two intersecting lines, of which one is perpendicular to
the side AB and the other to the side BC.

From the vertex of the angle 1, draw two auxiliary lines: 5D L
BC and BE | BA. The angle 6 formed by these lines is congruent to
the angle 1 for the following reason. The angles DBC and EBA are
congruent since both are right. Subtracting from each of them the
same angle FBC we obtain: Z1 = £6. Now notice that the sides of
the auxiliary angle 6 are paralle] to the intersecting lines which form

“the angles 2, 3, 4, 5 {because two perpendiculars to the same line are
parallel, §71). Therefore the latter angles are cither congruent to the
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angle 6 or supplement it to 2d. Replacing the angle 6 with the angle
1 congruent to it, we obtain what was required to prove,

EXERCISES

140. Divide the plane by infinite straight lines into five parts, using
as few lines as possible.

141. In the interior of a given angle, construct an angle congruent,
to it. ' _

142. Using a protractor, straightedge, and drafting triangle, meagure
an angle whose vertex does not fit the page of the diagram.

143. Bow many axes of symmetry doeg & pair of parallel lines have?
How about three parallel lines?

144. Two parallel lines are intergected by a transversal, and one
of the eight angles thus formed ig 72°. Find the measures of the
remaining seven angles.

145. One of the interior angles formed by a transversal with one of
two given parallel lines is 4d/5. What angle does its bisector make
with the other of the two parallel lines?

146. The angle a transversal makes with one of two parallel lines is
by 90° greater than with the other. Find the angle.

147. Four out of eight angles formed by a transversal intersecting
two given lines contain 60° each, and the remaining four contain 120°
each. Does this imply that the given lines are parallel?

148. At the endpoints of the base of a triangle, perpendiculars to
the lateral sides are erected. Compute the angle at the vertex of the
triangle if these perpendiculars intersect at the angle of 120°.

149. Through a given point, construct a line making a given angle
to a given line.

150. Prove that if the bisector of one of the exterior angles of a
triangle is parallel to the opposite side, then the triangle is isosceles.

151. In a triangle, through the intersection point of the bisectors of
the angles adjacent to a base, a line parsallel to the bage is drawn.
Prove that the segment of this line contained between the lateral
sides of the triangle is congruent to the sum of the segments cut out
on these sides and adjacent to the base.

152.* Bisect an angle whose vertex does not fit the page of the
diagram.
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12 The angle sum of a polygon

81. Theorem. The sum of angles of a triangle is 2d.

Let ABC (Figure 86) be any triangle; we are required to prove
that the sum of the angles 4, B and C is 2d, i.e. 180°.

Extending the side AC past C and drawing C'E||AB we find:
LA = ZECD (as corresponding angles formed by & transversal inter-
secting parallel lines) and £B = ZBCE (as alternate angles formed
by & transversal intersecting parallel lines). Therefore

LA+ /B4 /C = /ECD+ /BCE + £C = 2d = 180°.

60° 60 ° ‘
D A &

Figure 86 Figure 87

Corollaries. (1) Any exterior angle of a triangle is congruent {o
the sum of the interior angles not supplementary to it (e.g. £BCD =
LA+ £B).

(2¥ If two angles of one triangle are congruent respectively to two
angles of another, then the remaining angles are congruent as well.

(8) The sum of the two acute angles of a right triangle is congru-
ent to one right angle, i.e. it 25 90°,

(4) In an isosceles Tight triangle, each acute angle is %d, i.e. 45°.

(5) In on equilateral triangle, each angle is 3d, i.c. 60°.

(6) If in a right triongle ABC (Figure 87) one of the acute angles
(for instance, ZB) 45 30°, then the leg opposile io il is congruent fo
a half of the hypotenuse. Indeed, noticing that the other acute angle
in such a triangle is 60° attach to the triangle ABC another triangle
ABD congruent to it. Then we obtain the triangle DBC, whose

~ angles are 60° each. Such a triangle has to be equilateral (§45), and
hence DC = BC. But AC = 1DC, and therefore AC = 3BC.
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We leave it to the reader to prove the converse proposition: If
a leg is congruent o o half of the hypotenuse, then the acute angle
opposite to it s 30°. .

82. Theoremn. The sum of angles of a convex polygon hav-
ing n sides is congruent to two right angles repeated n — 2
tzmes.

Taking, inside the polygon, an arbitrary point O (Figure 88), con-
nect it with all the vertices. The convex polygon is thus partitioned
into as many triangles as it has sides, i.e. n. The sum of angles in
each of them is 2d. Therefore the sum of angles of all the triangles
is 2dn. Obviously, this quantity exceeds the sum of all angles of the
polygon by the sum of all those angles which are situated around the
point O. But the latter sum is 4d (§27). Therefore the sum of angles
of the polygon is

2dn — 4d = 2d(n — 2) = 180° x (n — 2).

<

Figure 88 Figure 89

A

Remarks. {1) The theorem can be also proved this way. From
any vertex A (Figure 89) of the convex polygon, draw its diagonals.
The polygon is thus partitioned into triangles, the number of which
is two less than the number of sides of the polygon. Indeed, if we
exclude from counting those two sides which form the angle A of
the polygon, then the remaining sides correspond to one triangle
each. Therefore the total number of such triangles is n — 2, where
n denotes the number of sides of the polygon. In each triangle, the
sum of angles is 2d, and hence the sum of angles of all the trianglss is
2d(n — 2). But the latter sum is the sum of all angles of the polygon.

{2} The same result holds true for any non-convex polygon. To

prove this, one should first partition it into convex ones. For this,
it suffices to extend all sides of the polygon in both directions. The
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infinite straight lines thus obtained will divide the plane into convex
parts: convex polygons and some infinite regions. The original non-
convex polygon will consist of some of these convex parts.

83. Theorem. If at each vertex of a convex polygon, we
extend one of the sides of this angle, then the sum of the
exterior angles thus formed is congruent to 4d (regardless of
the number of sides of the polygon).

Each of such exterior angles (Figure 90) supplements to 2d one
of the interior angles of the polygon. Therefore if to the sum of all
interior angles we add the sum of these exterior angles, the result
will be 2dn (where n is the number of sides of the polygon}. But the
sum of the interior angles, as we have seen, is 2dn — 4d. Therefore
the sum of the exterior angles is the difference:

2dn — (2db — 4d} = 2dn — 2dn + 4d = 4d = 360°.

>

Figure 90

EXERCISES

153. Compute the angle between two medians of an equilateral tri-
angle,
154. Compute the angle between bisectors of acute angles in a right
friangle.
155. Given an angle of an isosceles triangle, compute the other two.
Consider two cages: the given angle is {a} at the vertex, or (b) at the
base. .
156. Compute interior and exterior angles of an equiangular pen-
tagon. '

~ 157.* Compute angles of a triangle which is divided by one of its
bigectors into two isosceles triangles. Find all solutions.
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158. Prove that if two angles and the side opposite to the first of
them in one triangle are congruent respectively to two angles and
the side opposite to the first of them in another triangle, then such
triangles are congruent.

Remark: This proposition is called sometimes the A AS-test, or
SAA-test.

159. Prove that if a leg and the acute angle opposite to it in one
right triangle are congruent respectively to s leg and the acute an-
gle opposite to it in another right triangle, then such triangles are
congruent.

160. Prove that in & convex polygon, one of the angles between the
bisectors of two consecutive angles is congruent to the semisum of
these two angles.

161. Given two angles of a triangle, c&n‘mtruct; the third one.

162. Given an acute angle of a right triangle, construct the other
acuite angle.

163. Construct a right triangle, given one of its legs and the acute
angle opposite to it.

164. Construct a triangle, given two of its angles and a side opposite
to one of them.

165. Construct an isosceles triangle, given its base and the angle at
the vertex.

166. Construct an isosceles triangle: (s) given the angle at the base,
and the altitude dropped to one of the lateral sides; (b) given the
lateral side and the altitude dropped to it.

167. Construct an equilateral triangle, given its altitude.

16‘8 Trisect a right angle (in other werds, construct the angle of
3 X 90° = 30°).

169. Construct a polygon congruent to a given one.

Hint: Diagonals partition a convex polygon into triangles.

170. Construct & quadrilateral, given three of its angles and the sides
containing the fourth angle.

Hint: Find the fourth angle.

171" How many acute angles can a convex polygon have?

172.* Find the sum of the “interior” angles at the five vertices of a
five-point star (e.g. the one shown in Figure 221), and the sum of
its five exterior angles (formed by extending one of the sides at each
vertex). Compare the results with thoge of §82 and §83.

173.* Following Remark (2) in §82, extend the results of §82 and
§83 to non-convex polygons. .
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13 Parallelograms and trapezoids

84. The parallelogram. A quadrilateral whose opposite sides
are pairwise parallel is called a parallelogram. Such a quadrilateral
(ABCD, Figure 91) is obtained, for instance, by intersecting any two
parallel lines KL and M N with two other parallel lines RS and PQ.

85. Properties of sides and angles.

Theorem. In any parallelogram, opposite sides are congru-
ent, opposite angles are congruent, and the sum of angles
adjacent to one side is 2d (Figure 92).

Drawing the diagonal BD we obtain two triangles: ABD and
BCD, which are congruent by the ASA-test because ED is their
common side, /1 = Z4, and /Z = /3 (as alternate angles formed
by a transversal intersecting parallel lines). It follows from the con-
gruence of the triangles that AB = CD, AD = BC, and LA = ZC.
The opposite angles B and D are also congruent since they are sums
of congruent angles.

Finally, the angles adjacent to one gide, e.g. the angles A and
I, add up to 2d since they are same-side interior angles formed by
a transversal intersecting parallel lines.

Corollary. If one of the angles of a parallelogram is right, then
the other three are also right.

Remark. The congruence of the opposite sides of a parallelogram
can be rephraged this way parallel segments cut out by parollel lines
are congruent.

/L /N B C c M N D
P ) >
B U c
4

R AV D s 3

/ A D A P & B

K M

Figure 91 Figure 92 Figure %3

Corollary. If two lines are parallel, then all points of each of
them are the same distance away from the other line; in short parailel
lines (AB and CD, Figure 93) are everywhere the same distance
apart.
© Indeed, if from any two points M and N of the line ©D, the
perpendiculars M P and N@ to AB are dropped, then these perpen-
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diculars are paralle] (§71), and therefore the quadrilateral MNQP is
a parallelogram. It follows that MN = N@Q, i.e. the points M and
N are are the same distance away from the line AB.

Remark. Given a parallelogram (ABCD, Figure 91), one some-
times refers to a pair of its parallel sides (e.g. AD and BC) as a pair
of bases. In this case, a line segment (UV) connecting the parallel
lines PQ and RS and perpendicular to them is called an altitude
of the parallelogram. Thus, the corollary can be rephrased this way:
all altitudes between the same bases of a parallelogram are congruent
to each other. :

86. Two tests for parallelograms.

Theorem. If in a convex gquadrilateral:

(1) opposite sides are congruent to each other, or

(2) two opposite sides are congruent and parallel,
then this quadrilateral is a parallelogram.

(1) Let ABCD (Figure 92) be a quadrilateral such that

AB=CD and BC =AD.

It is required to prove that this quadrilateral is a parallelogram, i.e.
that AB||CD and BC|AD.

Drawing the diagonal BD we obtain two triangles, which are
congruent by the SSS-test since BD is their common side, and AE =
CD and BC = AD by hypothesis. It follows from the congruence
of the triangles that /1 = Z4 and /2 = /3 (in congruent triangles,
congruent sides oppose congruent angles). This implies that AB||CD
and BC||AD (if alternate angles are congruent, then the lines are
parallel).

(2) Let ABCD (Figure 92} be & quadrilateral such that BC|AD
and BC = AD. It is required to prove that ABC D is a parallelo-
gram, le. that AB||CD.

The triangles ABD and BCD are congruent by the SAS-test
because BD is their common side, BC = AD (by hypothesis), and
£2 = /3 (as alternate angles formed by intersecting parallel lines by
a transversal). The congruence of the triangles implies that Z1 = Z4,
and therefore AB|CD.

87. The diagonals and their property. :

Theorem. (1} If a quadrilateral (ABCD, Figure 94) is a par-
allelogram, then its diagonals bisect each other.

(2) Vice versa, in a quadrilateral, if the diagonals bisect
each other, then this quadrilateral i3 a parallelogram.
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(1) The triangles BOC and AOD are congruent by the ASA-test,
because BC = AD (as opposite sides of a parallelogram), £1 = £2

and £3 = Z4 (as alternate angles). It follows from the congruence
of the triangles that OA = OC and OD = OB.

B P 9

A Q D

Figure %4

(2} If AO = OC and BO = OD, then the triangles AOD and
BOC are congruent (by the SAS-test). It follows from the congru-
ence of the triangles that £1 = £2 and /3 = Z4. Therefore BC|AD
(alternate angles are congruent) and BC = AD. Thus ABCD is a
parallelogram (by the second test).

88. Central symmetry. Two points A and A’ (Figure 95) are
called symmetric about a peint O, if O is the midpoint of the line
segment AA

Thus, in order to construct the point symmetric to a given point
A about another given point (), one should connect the points A
and O by a line, extend this line past the peint O, and mark on the
extension the segment 0.4’ congruent to OA. Then 4’ is the required
point.

Two figures (or two parts of the same figure) are called symmetric
about a given point O, if for each point of one figure, the point
symmetric to it about the point O belongs {o the other figure, and
vice versa. The point O is then called the center of symmetry. The
symmetry itself is called central (a8 opposed to the axial symmetry
we encountered in §37}. If each point of a figure is symmetric to some
point of the same figure (about a certain center), then the figure is
said to have a center of symmetry. An example of such a figure is a
circle; its center of symmetry is the center of the circle.

Every figure can be superimposed on the figure symmet-
ric to it by rotating the figure through the angle 180° about
the center of symmeiry. Indeed, any two symmetric points (say,
A and A, Figure 95) exchange their positions under this rotation.

Remarks. (1) Two figures symmetric about a point can be super-
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imposed therefore by a motion within the plane, i.e. without lifting
them off the plane. In this regard central symmetry differs from axial
symmetry (8§37), where for superimposing the figures it was necessary
to flip one of them over.

(2) Just like axial symmetry, central symmetry is frequently found
around us (see Figure 96, which indicates that each of the letters NV
and S has & center of symmetry while £ and W do not).

N S

. X @ W | E
’ 3 | M
7 &y

Figure 95 Figure 96

89. In a parallelogram, the intersection point of the di-
agonals is the center of symmetry (Figure 94).

Indeed, the vertices A and C are symmetric about the intersection
point O of the diagonals (since AO = OD), and so are B and C:
Furthermore, for a point P on the boundary of the parallelogram,
draw the line PO, and let @@ be the point where the extension of
line past O meets the boundary. The triangles AQO and C'PO are
congruent by the ASA-test for /4 = /3 {as alternate), ZQOA =
ZPOC {as vertical), and AO = OC. Therefore QO = OP, ie. the
points P and ¢} are symmetric about the center O.

Remark. If a parallelogram is turned around 180° about the
intersaction point of the diagonals, then each vertex exchanges its
position with the opposite one (A with C, and B with D in Figure
94}, and the new position of the parallelogram will coincide with the
old one.

Most parallelograms do not possess axial syrmmetry. In the next
section we will find out which of them do. :

90. The rectangle and its properties. If one of the angles of
a parallelogram is right then the other three are also right (§85). A
- parallelogram all of whose angles are right is called a rectangle.

Since rectangles are parallelograms, they possess all properties of .
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parallelograms (for instance, their diagonals bisect each other, and
the intersection point of the diagonals is the center of symmetry).
However rectangles have their own special properties.

B C !

Figure 97 Figure 98

(1} In e rectangle (ABCD, Figure 97), the diagonals are
congruent.

The right triangles ACD and ABD are congruent because they
have respectively congruent legs (AD is a common leg, and AB ==
CD as opposite sides of a parallelogram}. The congruence of the
triangles implies: AC = BD.

(2) A rectangle has two axes of symmetry. Namely, each
line pagsing through the center of symmetry and parallel to two op-
posite sides of the rectangle is its axis of symmetry. The axes of
symmetry of a rectangle are perpendicular to each other (Figure 98},

91. The rhombus and its properties. A parsllelogram all
of whose sides are congruent is called a rhombus. Beside all the
properties that parallelograms have, rhombi also have the following
special ones.

Figure 99 Figure-100

(1) Diagonals of a rhombus (ABCD, Figure 99) are perpen-
dicular and bisect the angles of the rhombus.

The triangles AOB and COB are congruent by the SSS-test be-
cause BO is their common side, AB = BC (since all sides of &
rhombus are congruent), and AO = OC (since the diagonals of any
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parallelogram bisect each other). The congruence of the triangles
implies that

/1=/2, ie. BD L AC, and 23 = /4,

i.e. the angle B is bisected by the diagonal BD. From the congruence
of the triangles BOC and DOC, we conclude that the angle C is
bisected by the diagonal (A, ete.

(2) Each diagonal of a rhombus is its azis of symmelry.

The diagonal BD (Figure 99) is an axis of symmetry of the rhom-
bus ABCD because by rotating ABAD about BD we can superim-
pose it onto ABCD. Indeed, the diagonal BD bisects the angles B
and D, and beside this AB = BC and AD = DC.

The same reasoning applies to the diagonal AC.

92. The square and its properties. A square can be defined
ag a parallelogram all of whose sides are congruent and all of whose
angles are right. One can also say that a square is a rectangle all
of whose sides are congruent, or a rhombus all of whose angles are
right. Therefore a square possesses all the properties of parallelo-
grams, rectangles and rhombi. For instance, a square has four axes
of symmetry (Figure 100): two passing through the midpoints of op-
posite sides (as in a rectangle), and two passing through the vertices
of the opposite angles (as in a rhombus).

Figure 101

93. A theorem based on properties of parallelograms.

Theorem. If on one side of an angle {¢.g. on the side BC
of the angle ABC, Figure 101}, we mark segments congruent to
each other (DE = EF = ...}, and through their endpoinis,
we draw parallel lines (DM, EN, FP, ...} wuntil their in-
tersections with the other side of the angle, then the seg-
ments cut out on this side will be congruent to each other
(MN =NP=...). |
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Draw the auxiliary lines DK and DL parallel to AB. The trian-
gles DKFE and FLF are congruent by the ASA-test since DE = EF
(by hypothesis), and ZKDE = ZLEF and /KED = /LFE (as cor-
responding angles formed by a transversal intersecting parallel lines).
From the congruence of the triangles, it follows that DK = EL. But
DK = MN and EL = NP (as opposite sides of parallelograms),

and therefore MN = NPFP.

Remark. The congruent segments can be also marked starting
from the vertex of the angle B, i.e. likethis: BD=DE=FEF=....
Then the congruent segments on the other side of the angle are also
formed starting from the veriex, i.e. BM = MN=NP=....

94. Corollary. The line (DE, Figure 102) passing through the
midpoint of one side (AB) of a triangle and parallel to another side
bisects the third side (BC).

Indeed, on' the side of the angle B, two congruent segments BD =
DA are marked and through the division points D and A, two parallel
lines DE and AC are drawn until their intersections with the side
BC. Therefore, by the theorem, the segments cut out on this side
are also congruent, i.e. BE 2= EC, and thus the point % bisects BC.

Remark. The segient connecting the midpoints of two sides of
a triangle is called a midline of this triangle.

B

Figure 102

95. The midline theorem.

Theorem. The line segment (DE, Figure 102) connecting the
midpoints of two sides of a triangle is parallel to the third
side, and s congruent to a half of .

To prove this, imagine that through the midpoint D of the side
AB, we draw a line parallel to the side AC. Then by the result of
§94, this line bisects the side BC and thus coincides with the line
DE connecting the midpoints of the sides AB and BC.

Furthermore, drawing the line EF||AD, we find that the side
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AC is bisected at the point /. Therefore AF = F'C and beside this
AF = DE (as opposite sides of the parallelogram ADFEF). This
implies: DE = %AC.

96. The trapezoid. A quadrilateral which has two opposite
sides parallel and the other two opposite sides non-parallel is called
a trapegoid. The parallel sides (AD and BC, Figure 103) of a trape-
zoid are called its bases, and the non-parallel sides (AB and CD)
its lateral sides. If the lateral sides are congruent, the trapezoid is
called isosceles.

%
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Figure 103 Figure 104

97. The midline of a trapezoid. The line segment connecting
the midpoints of the lateral sides of a trapezoid is called its midline.

Theorem. The midline (EF, Figure 104} of a trapezoid is
parallel to the bases and is congruent to their semisum.

, Through the points B and F, draw a line until its intersection

with the extension of the side AD at some point G. We obtain
two triangles: BCF and GDF, which are congruent by the ASA-
test since CF = FD (by hypothesis), /ZBFC = ZGFD (as vertical
angles), and ZBCF = ZGDF (as alternate interior angleg formed by
a transversal intersecting parallel lines}. From the congruence of the
triangles, it follows that BF = F'G and BC = D{. We gee now that
in the triangle AB({, the line segment EF connects the midpoints of
two sides. Therefore (§95) we have: EF||AG and EF = 3(AD+DG),

or in other words, EF||AD and EF = £(AD + BC).

EXERCISES

174. Is a parallelogram considered a trapezoid?

175. How many centers of symmetry can a polygon have?
176. Can a polygon have two parallel axes of symmetry?
1'77. How many axes of symmetry can a quadrilateral have?
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Prove theorems:

178. Midpoints of the sides of a quadrilateral are the vertices of a
parallelogram. Determine under what conditions this parallelogram
will be (a) a rectangle, (b} a rhombus, (¢) a square.

179. In a right triangle, the median to the hypotenuse is congruent
to a half of it. ‘
Hint: Double the median by extending it past the hypotenuse.

180. Conversely, if a median is congruent to a half of the side it
bisects, then the triangle is right.

181. In a right triangle, the median and the altitude drawn-to the
hypotenuse make an angle congruent to the difference of the acute
angles of the triangle.

182. In AABC, the bisector of the angle A meets the side BC at
the point D; the line drawn from D and parallel to CA meets AB
at the point F; the line drawn from F and parallel to¢ BC meets AC
at F'. Prove that FA = F'C.

183. Ingide a given angle, another angle is constructed such that
its sides are parallel to thessides of the given one and are the same
distance away from them. Prove that the bigsector of the constructed
angle lies on the bisector of the given angle.

184. The line segment connecting any point on one base of a trape-
zoid with any point on the other bage is bisected by the midline of
the trapezoid.

185. The segment between midpoints of the diagonals of a trapezoid
is congruent to the semidifference of the bases.

186. Through the vertices of a triangle, the lines parallel to the
opposite sides are drawn. Prove that the triangle formed by these
lines consists of four triangles congruent te the given one, and that
each of its sides is twice the corresponding side of the given triangle.
187. In an isosceles triangle, the sum of the distances from each point
of the base to the lateral sides is constant, namely it is congruent to
the altitude dropped to a lateral side.

188&. How does this theorem change if points on the extension of the
base are taken instead?

189. In an equilateral triangle, the sum of the distances from an
interior point to the sides of this triangle does not depend on the
point, and is congruent to the altitude of the triangle.

190. A parallelogram whose diagonals are congruent is a rectangle.

~191. A parallelogram whose diagonals are perpendicular to each
other is a rhombus.
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192. Any parallelogram whose angle is bisected by the diagonal is a
rhombus.

193. From the intersection point of the diagonals of a rhombus,
perpendiculars are dropped to the sides of the rhombus. Prove that
the feet of these perpendiculars are vertices of a rectangle.

194. Bisectors of the angles of a rectangle cut out a square.

195. Let A’ B’ ' and D’ be the midpoints of the sides CD, DA,
AB, and BC of a square. Prove that the segments AA, CC', DD,
and BB’ cut out a square, whose sides are congruent to 2/5th of any
of the segments. :

186. Given a square ABCD. On its sides, congruent segments AA/,
BB CC' and DD’ are marked. The points A, B, (', and D’ are .
connected consecutively by lines. Prove that A’B'C'D’ is a square.

Find the geometric locus of:

197. The midpoints of all segments drawn from a given point to
various points of a given line.

198. The points equidistant from two given parallel lines.

199. The vertices of triangles having a common base and congruent
altitudes.

Construction problems

£200. Draw a line parallel to a given one and situated at a given
distance from it.

201. Through a given point, draw a line such that its line segment,
contained between two given lines, is bisected by the given point.
208. Through a given point, draw a line such that its line segment,
contained between two given parallel lines, is congruent to a given
segment.

203. Between the sides of a given angle, place a segment congruent
to & given segment and perpendicular to one of the sides of the angle.
204. Between the sides of a given angle, place a segment congruent
to a given segment and parallel to a given line intersecting the sides
of the angle. '

205. Between the sides of a given angle, place a segment congruent
to a given segment and such that it cuts congruent segments on the
sides of the angle.

206. In a triangle, draw a line parallel fo its bage and such that the
line segment contained between the lateral sides is congruent to the
sum of the segments cut out on the lateral sides and adjacent to the
base.
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98. Problem. To divide a given line segment (AB, Figure 105)
into o given number of congruent parts {e.g. into 3).

From the endpoint A, draw a line AC that forms with AB some
angle. Mark on AC, starting from the point A, three congruent
segments of arbitrary length: AD = DE = EFF. Connect the point
F with B, and draw through F and 2 lines EN and DM parallel
to £B. Then, by the results of §93, the segment AB is divided by
the points M and N into three congruent parts.

, c
F
E
D
A M N B
Figure 105 Figure 106

99. The method of parallel translation. A special method
of solving congtruction problems, known as the method of parallel
translation, is bagsed on properties of parallelograms, It can be best
explained with an example.

Problem. Two touns A and B (Figure 106) are situated on op-
posite sides of a canal whose bonks D and EF are parallel straight
lines. At which point should one busld o bridge MM’ across the canal
in order to make the path AM 4+ MM' + M'B between the towns the
shortest possible?

To facilitate the solution, imagine that all points of the side of
the canal where the town A is situated are moved downward (“trans-
lated”) the same distance along the lines perpendicular to the banks
of the canal as far as to make the bank CD merge with the bank
EF. In particular, the point A is translated to the new position
A" on the perpendicular AA’ to the banks, and the segment AA’ is
congruent to the bridge MM’ Therefore AAM'M is a parallelo-
gram (§86 (2)), and hence AM = A'M’ We conclude that the sum
AM + MM’ + M'B is congruent to AA’ + A’M' 4+ M'B. The latter
sum will be the shortest when the broken line A’M'B is straight.



14. Methods of construction and symmetrics 79

Thus the bridge should be-built at that point X on bank EF where
the bank intersects with the straight line A’B.

100. The method of reflection. Properties of axial symmetry
can also be used in solving construction problems. Sometimes the
required construction procedure is easily discovered when one folds a
part of the diagram along a certain line (or, equivalently, reflects it
in this line as in a mirror) so that this part occupies the symmetric
position on the other side of the line. Let us give an example.

Problem. Two towns A and B (Figure 107) are situated on the
same side of a raslroad CD which has the shape of a straight line.
At which point on the railroad should one build a station M in order
to make the sum AM + MB of the disionces from the towns to the
station the smallest possible?

Reflect the point A to the new position A’ symmetric about the
line C'D. The segment A’M is symmetric to AM about the line C'D,
and therefore A’M = AM. We conclude that the sum AM + MB is
congruent to A’M + M B. The latter sum will be the smallest when
the broken line A’M B is straight. Thus the station should be built
at the point X where the railroad line C' DD intersects the straight line
A'B.

The same construction golves yet another problem: given the line
CD, and the points A and B, find a point M such that ZAMC =
/BMD.

Figure 107 Figure 108

101. Translation. Suppose that a figure {say, a triangle ABC,
Figure 108) is moved to a new position (A'B'C’) in a way such that
all segments between the points of the figure remain parallel to them-
selves (i.e. A'B||AB, B'/C'||BC, etc.). Then the new figure is called
a translation of the original one, and the whole motion, too, is
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called translation. Thus the sliding motion of a drafting triangle
(Figure 76) along a straightedge (in the construction of parallel lines
described in §74) is an example of translation.

Note that by the results of §86, if AB||A’B’ and AB = A'B’ (Fig-
ure 108), then ABB'A’ is a parallelogram, and therefore AA’[|BB’
and AA" = BB’ Thus, if under translation of a figure, the new posi-
tion A’ of one point A is known, then in order to translate all other
points B, C, etc., it suffices to construct the parallelograms AA'B'B,
AA'C'C, ete. In other words, it suffices to comstruct line segments
BB, CC, etc. parallel to the line segment AA’, directed the same
way as A4’ and congruent to it.

Vice versa, if we move a figure {e.g. AABC) to a new position
(AA'B'CY) by constructing the line segments A4’ BB, CC' ete.
which are congruent and parallel to each other, and are also directed
the same way, then the new figure is a translation of the old one.
Indeed, the quadrilaterals AA’B'B, AA'C'C, ete. are parallelograms,
and therefore all the segments AR, BC, ete. are moved to their new
positions A’B’, B'(Y, ete. remaining parallel to themselves.

Let us give one more example of a construction problem solved
by the method of translation.

102. Problem. To construct a quadrilateral ABCD (Figure
109), given segments congruent to itz sides and to the line EF con-
necting the midpoints of two opposite sides.

B

F
b | WC
. c
Figure 109

To bring the given lines close to each other, translate the sides
AD and BC, i.e. move them in a way such that they remain parallel
to themselves, to the new positions ED' and EC". Then DAED' and
C'EBC are parallelograms, and hence the segment DIV is congruent
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and parallel to AE, and the segment C'C’ congruent and parallel to
BE. But AE = EB, and therefore DD’ = CC' and DD'||CC". As
a consequence, the triangles DD'F and CC'F are congruent by the
SAS-test (since DI = C(', DF = FC, and ZD'DF = Z0'CF).
The congruence of the triangles implies that ZD'FD = ZC'FC,
hence the broken line D' FC' turns out to be straight, and therefore
the figure ED'FC’ is a triangle. In this triangle, two sides are known
(ED' = AD and EC' = BC), and the median EF to the third side
is known too. The triangle EC’'D’ is easily recovered from these
data. (Namely, double EF by extending it past I and connect the
obtained endpoint with I’ and ¢\ In the resulting parallelogram,
all sides and one of the diagonals are known. )

Having recovered AED'CY, construct the triangles D'DF and
C'CF, and then the entire quadrilateral ABCD.

EXERCISES

207. Construct a triangle, given:

(a) its base, the altitude, and a lateral side;

(b) its base, the altitude, and an angle at the base;

(c) an angle, and two altitudes dropped to the sides of this angle;
(d) a side, the sum of the other two sides, and the altitude dropped
to one of these sides;

(e) an angle at the base, the altitude, and the perimeter.

208. Construct a quadrilateral, given three of its sides and both
diagonals.

209. Construct a parallelogram, given:

{(a) two non-congruent sides and a diagonal;

(b) one side and both diagonals;

(¢) the diagonals and the angle between them;

{d) a side, the altitude, and a diagonal. (Is this always possible?}

210. Construct a rectangle, given a diagonal and the angle between
the diagonals.

211. Construct a rhombus, given:

(a) its side and a diagonal;

(b) both diagonals;

(¢) the distance between two parallel sides, and & diagonal;
{d} an angle, and the diagonal passing through its vertex;
{e) a diagonal, and an angle opposite to it;

(f) a diagonal, and the angle it forms with one of the sides.

212. Construct a square, given its diagonal.
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213. Construct a trapezoid, given:

(a) its base, an angle adjacent to it, and both lateral sides {there can
be two solutions, one, or none);

(b) the difference between the bases, a diagonal, and lateral sides;
(c) the four sides (is this always possible?);

(d) a base, its distance from the other base, and both diagonals (when
is this possible?);

(e) both bases and both diagonals (when is this possible?).

214.* Construct a square, given:

{a) the sum of a diagonal and a side;

{b)-the difference of a diagonal and an altitude.

215.% Construct a parallelogram, given its diagonals and an altitude.

216.* Construct a parallelogram, given its side, the sum of the di-
agonals, and the angle between them.

217.* Construct a triangle, given:

{a) two of its sides and the median bisecting the third one;

(b} its base, the altitude, and the median bisecting a lateral side.
218.* Construct a right triangle, given:

(a} its hypotenuse and the stun of the legs;

(b) the hypotenuse and the difference of the legs. Perform the re-
search stage of the solutions.

219. Given an angle and a point inside it, construct a triangle with
the shortest perimeter such that one of its vertices is the given point
and the other two vertices lie on the sides of the angle.

Hint: use the method of reflection.

220.* Construct a quadrilateral ABCD whose sides are given as-
suming that the diagonal AC bisects the angle A.

221.% Given positions A and B of two billiard balls in a rectangular
billiard table, in what direction should one shoot the ball A so that
it reflects Cozzseczztwely in the four sides of the bzllllald and then hits
the ball B?

222. Construct a trapezoid, given all of its sides.

Hint: use the method of translation.

£223.* Construct a trapezoid, g1ve21 one of its angles, both diagonals,
and the midline.

224 Construct a quadrilateral, given three of its sides and both
angles adjacent to the unknown side.



Chapter 2

THE CIRCLE

1 Circles and chords

103. Preliminary remarks. Obviously, through a point (A4,
Figure 110), it is possible to draw as many circles as one wishes:
their centers can be chosen arbitrarily. Through two points (A and
B, Figure 111), it is also possible to draw unlimited number of circles,
but their centers cannot be arbitrary since the poiuts equidistant
from two points A and B must lie on the perpendicular bisector
of the segment AB (i.e. on the perpendicular to the segment AB
passing through its midpoint, §56). ! ‘
Let us find out if it is possible to draw a cirele through three
points. -

Figure 110 Figure 111

104. Theorem. Through any three points, not lying on the
same line, it is possible to draw a circle, and such a circle
18 unique.

83
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Through three points A, B, C (Figure 112), not lying on the
same line, (in other words, through the vertices of a triangle ABC),
it is possible to draw a circle only if there exists a fourth point O,
which is equidistant from the points A, B, and . Let us prove that
‘such a point exists and is unique. For this, we take into account
that any point equidistant from the points A and B must lie on the
perpendicular bisector M N of the side AB (§56). Similarly, any point
equidistant from the points B and C must lie on the perpendicular
bisector P@ of the side BC. Therefore, if a point equidistant from
the three points A, B, and C exists, it must lie on both M N and PQ,
which is possible only when it coincides with the intersection point
of these two lines. The lines MN and P() do intersect (since they
are perpendicular to the intersecting lines AB and BC, §78). The
intersection point O will be equidistant from A, B, and . Thus, if
we take this point for the center, and take the segment QA (or OB,
or OC) for the radius, then the circle will pass through the points
A, B, and C. Since the lines M N and P can intersect only at cne
point, the center of such a circle is unique. The length of the radius
is also unambiguous, and therefore the circle in question is unique.

5
Q N

N

Figure 112

Remarks. (1) If the points A, B, and C' (Figure 112} lay on
the same line, then the perpendiculars M N and PQ would have
been parallel, and therefore could not intersect. Thus, through three
peints lying on the same line, it is not possible to draw a circle.

= {2} Three or more points lying on the same line are often called
collinear.
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Corollary. The point O, being the same distance away from A
‘and C, has to also lie on the perpendicular bisector RS of the side
AC. Thus: three perpendicular bisectors of the sides of a triangle
intersect at one poindt.

105. Theorem. The diameter (AB, Figure 113), perpendic-
ular to a chord, bisects the chord and each of the two arcs
subtended by it.

Fold the diagram along the diameter AB so that the left part of
the diagram falls onto the right one. Then the left semicircle will be
identified with the right semicircle, and the perpendicular KC will
merge with KD. Tt follows that the point C, which is the intersection
of the semicircle and K'C, will merge with D. Therefore KC' = KD,

AN ST TN TN

BC=BD, AC=AD.

A F
c_1 ™~
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K
G\B_,/D A\E/B
Figure 113 Figure 114

106. Converse theorems. (1) The diameter (AB), bisecting
a chord (CD), is perpendicular to this chord and bisects the
arc subtended by it (Figure 113).

(2) The diameter (AB), bisecting an arc (CBD), is perpern-
dicular to the chord subtending the asrc, and bisects it.

Both propositions are easily proved by reductio ad absurdum.

107. Theoren. The ares {AC and BD, Figure 114} contained
between parallel chords (AB and CD) are congruent.

Fold the diagram along the diameter EF L AB. Then we can
conclude on the basis of the previous theorem that the point A merges
~ with B, and the point C with D. Therefore the arc AC is identified
with the arc BD, i.e. these arcs are congruent.

108. Problems. {1) To bisect a given arc (AB, Figure 115).

Connecting the ends of the arc by the chord AB, drop the per-
pendicular to this chord from the center and extend it up to the
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intersection point with the arc. By the result of §106, the arc AB is
bisected by this perpendicular.

However, if the center is unknown, then one should erect the
perpendicular to the chord at its midpoint.

Figure 115 Figure 116

(2) To find the center of a given circle (Figure 116).

Pick on the circle any three points A, B, and ', and draw two
chords through them, for instance, AB and BC. Erect perpendicu-
lars M N and PQ to these chords at their midpoints. The required
center, being equidistant from A, B, and C, has to lie on MN and
P¢). Therefore it is located at the intersection point O of these
perpendiculars.

109. Relationships between arcs and chords.
Theorems. In a disk, or in congruent disks:

(1) if two arcs are congruent, then the chords subtending
them are congruent and equidistant from the center;

(2) if two arcs, which are smaller than the semicircle, are
not congruent, then the greater of them is subtended by the
greater chord, and the greater of the two chords is closer to
the center.

(1) Let an arc AB {Figure 117) be congruent to the arc CD; it
is required to prove that the chords AB and CD are congruent, and
that the perpendiculars OF and OF to the ch{}rds dropped from the
center are congruent too.

Rotate the sector AOFB about the center O so that the radius OA
coincides with the radius OC. Then the arc AB will go along the arc
(D, and since the arcs are congruent they will coincide. Therefore
the chord AP will coincide with the chord CD, and the perpendicular

“OF will merge with OF (since the perpendicular from a given point

to a given line is unique), i.e. AB == CD and OF = OF.
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(2) Let the arc AB (Figure 118} be smaller than the arc CD,
and let both arcs be smaller than the semicircle; it is required to
prove that the chord AB is smaller than the chord C'D, and that the
perpendicular OF is greater than the perpendicular OF.

Figure 117 Figure 118

Mark on the arc CD the arc C'K congruent to the arc AB and
draw the auxiliary chord 'K, which by the result of part (1) is con-
gruent to and is the same distance away from the center as the chord
AB. The triangles COD snd C'OK have two pairs of respectively
congruent sides (since they are radii), and the angles contained be-
tween these sides are not congruent. In this case {§50), the greater
angle (i.e. ZCOD) is opposed by the greater side. Thus CD > CK,
and therefore CD > AB.

In order to prove that OF > OF, draw OL L CK and take into
account that OF = OL by the result of part (1), and therefore it
suffices to compare OF with (L. In the right triangle OF M (shaded
in Figure 118), the hypotenuse OM is greater than the leg OF. But
OL > OM, and hence OL > OF, i.e. OF > OF.

The theorem just proved for one disk remains true for congru-
ent disks because such disks differ from one another only by their
position.

110. Converse theorems. Since the previous theorems address
all possible mutually exclusive cases of comparative size of two arcs
of the same radius {assuming that the arcs are smaller than the
semicircle), and the obtained conclusions about comparative size of
subtending chords or their distances from the center are mutually
exclusive too, the converse propositions have to hold true as well.
Namely:

In a disk, or in congruent disks:

{1) congruent chords are equidistant from the center and
subtend congruent arcs;
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(2) chords equidistant from the center are congruent and
subtend congruent arcs,

(3) the greater one of two non-congruent chords is closer
to the center and subtends the greater arc,

(4) among two chords non-equidistant to the center, the
one which is closer to the center subiends the grealer are.

These propositions are easy to prove by reductio ad absurdum.
For instance, to prove the first of them we may argue this way. If
the given chords subtended non-congruent arcs, then due to the first
direct theorem the chords would have been non-congruent, which
contradicts the hypothesis. Therefore congruent chords must sub-
tend congruent arcs. But when the arcs are congruent, then by the
direct theorem, the subtending chords are equidistant from the cen-
ter.

111. Theorem. A diameter is the greatest of all chords.

Connecting the center O with the ends of any chord AB not
passing through the center (Figure 119}, we obtain a triangle AOB
such that the chord AB is pne of its sides, and the other two sides
are radii. By the triangle inequality (§48) we conclude that the chord
AB is smaller than the sum of two radii, while a diameter is the sum
of two radii. Thus a diameter ig greater than any chord not passing
through the center. But since a diameter is also a chord, one can say
that diameters are the greatest of all chords.

A C B

Figure 119 Figure 120

EXERCISES

225. A given segment is moving, remaining parallel to itself, in such
& way that one of its endpoints lies on a given circle. Find the
geometric locus described by the other endpoint.

" £26. A given segment is moving in such a way that its endpoints slide
along the sides of a right angle. Find the geometric locus described
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by the midpoint of this segment.

227. On a chord AB, two points are taken the same distance away
from the midpoint C of this chord, and through these points, two
perpendiculars to AB are drawn up to their intersections with the
circle. Prove that these perpendiculars are congruent.

Hint: Fold the diagram along the diameter passing through C.

228. Two intersecting congruent chords of the same eircle are divided
by their intersection point into respectively congruent segments.

229. In a disk, two chords CC’ and D) perpendicular to a diameter
AB are drawn. Prove that the segment M M’ joining the midpoints
of the chords CD and C'D' is perpendicular to AB.

230. Prove that the shortest of all chords, passing through a point 4
taken in the interior of a given circle, is the one which is perpendicular
to the diameter drawn through A.

231, Prove that the closest and the farthest points of a given circle
from a given point lis on the secant passing through this point and
the center.

Hint: Apply the triangle inequality.

232. Divide a given arc into 4, 8,16, ... congruent parts.

233. Construct two arcs of the same radius, given their sum and
difference.

234. Bisect a given circle by another circle centered at a given point.
235. Through a point inside a disk, draw a chord which is bisected
by this point.

236. Given a chord in a disk, draw anocther chord which is bisected
by the firat one and makes a given angle with it. (Find out for which
angles this is possible.) .

23%7. Construct a circle, centered at a given point, which cuts off a
chord of a given length from a given line. |

238. Construct a circle of a given radius, with the center lying on
one side of & given angle, and such that on the other side of the angle
it cuts out a chord of a given length.

2 Relative positions of a line and a circle

112. A line and a circle can obviously be found only in one of
the following mutual positions:

(1) The distance from the center to the line is greater than the
radius of the circle (Figure 120}, i.e. the perpendicular OC dropped
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to the line from the center O is greater than the radius. Then the
point C of the line is farther away from the center than the points of
the circle and lies therefore outside the disk. Since all other points
of the line are even farther away from O than the point C (slants
are grater than the perpendicular), then they all lie outside the disk,
and hence the line has no common points with the circle.

(2) The distance from the center Lo the line is smaller than the
radius (Figure 121). In this case the point C lies inside the disk, and
therefore the line and the circle intersect.

(3) The distance from the center to the line equals the radius
(Figure 122), i.e. the point € is on the circle. Then any other point
D of the line, being farther away from O than C, lies outside the disk.
In this case the line and the circle have therefore only one common
point, namely the one which is the foot of the perpendicular dropped
from the center to the line.

Such a line, which has only one commeon point with the circle, is
called a tangent to the circle, and the common point is called the
tangency point.

T
A C D B
A c B
o] o]
Figure 121 Figure 122

113. We see therefore that out of three possible cases of dispo-
sition of a line and a circle, tangency takes place only in the third
case, i.e. when the perpendicular to the line dropped from the center
is a radius, and in this case the tangeney point is the endpoint of the
radius lying on the circle. This can be also expressed in the following
Wa}’:

(1) if a line (AB) is perpendicular to the radius (OC) at
its endpoint (C) lying on the circle, then the line is tangent
to the circle, and vice versa:

(2) if a tine is tangent to a circle, then the radius drawn
to the tangency point is perpenddicular to the line.

114. Problem. 7o construct a tengent to a given circle such that
it is parallel to a given ling AB (Figure 123).
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Drop to AB the perpendicular OC from the center, and through
the point D, where the perpendicular intersects the circle, draw
EF|AB. The required tangent is EF. Indeed, since OC L AB
and EF|AB, we have EF 1L (D, and a line perpendicular to a
radius at its endpoint lying on the circle, is a tangent.

E A E
9 D < lo
C D
F B
A M B
Figure 123 Figure 124

115. Theorem. If a tangent is parallel to a chord, then
the tangency point bisects the arc subtended by the chord.

Let a line AB be tangent to a circle at a point M (Figure 124)

N

and be parallel to a chord € D; it is required to prove that CM=MD.

The diameter M F passing through the tangency point M is per-
pendicular to AB and therefore perpendicular to CD. Thus the
A

P
diameter bisects the arc CMD (§105), i.e. CM=MD.

EXERCISES -

239. Find the geometric locus of points from which the tangents
drawn to a given circle are congruent to a given segment.

240. Find the geometric locus of centers of circles described by a
given radius and tangent to a given line.

241. Two lines passing through a point M are tangent to a circle
at the points A and B. The radius OB is extended past B by the
segment BC = OB. Prove that ZAMC =3ZBMC,

242. Two lines passing through a point M are tangent to a circle
at the points A and B. Through a point C taken on the smaller of
the arcs AB, a third tangent is drawn up to its intersection points [0
and E with M A and M B respectively. Prove that (1} the perimeter
of ADMUE, and (2) the angle DOE (where O is the center of the
circle) do not depend on the position of the point C.

Hint: The perimeter is congruent to MA+MB; LDOFE = %—EAOB.
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243. On a given line, find a point closest to a given circle.

244. Construct a circle which has a given radius and is tangent to a
given line at a given point.

245. Through a given point, draw a circle tangent to a given line at
another given point.

246. Through a given point, draw a circle that has a given radius
and is tangent to a given line.

247. Construct a circle tangent to the sides of a given angle, and to
one of them at a given point.

24 8. Construct a circle tangent to two given parallel lines and passing
through a given point lying between the lines.

249. On a given line, find a point such that the tangents drawn from
this point to a given circle are congruent to a given segment.

3 Relative positions of two circles

116. Definitions. Two,circles are called tangent to each other
if they have ouly one common point. Two circles which have two
common points are said to intersect each other..

Two circles cannot have three common points sineca if they did,
there would exist two circles passing through the same three points,
which is impossible (§104).

We will call the line of centers the infinite line passing through
the centers of two circles.

117. Theorem. If two circles (Figure 125) have a common
point (A) situated outside the line of centers, then they have
one more common point (A') symmetric to the first one with
respect to the line of centers, (and hence such circles intersect).

Figure 125

Indeed, the line of centers containg diameters of each of the circles
and is therefore an axis of symmetry of each of them. Thus the point



