11 Square *MATH* has a side length of 7 inches. Which three-dimensional object will be formed by continuously rotating square *MATH* around side \overline{AT} ?

- (1) a right cone with a base diameter of 7 inches
- (2) a right cylinder with a diameter of 7 inches
- (3) a right cone with a base radius of 7 inches
- (4) a right cylinder with a radius of 7 inches
- 12 Circle O with a radius of 9 is drawn below. The measure of central angle AOC is 120° .

What is the area of the shaded sector of circle O?

- (1) 6π (3) 27π
- (2) 12π (4) 54π
- **13** In quadrilateral QRST, diagonals \overline{QS} and \overline{RT} intersect at M. Which statement would always prove quadrilateral QRST is a parallelogram?
 - (1) $\angle TQR$ and $\angle QRS$ are supplementary.
 - (2) $\overline{QM} \cong \overline{SM}$ and $\overline{QT} \cong \overline{RS}$
 - (3) $\overline{QR} \cong \overline{TS}$ and $\overline{QT} \cong \overline{RS}$
 - (4) $\overline{QR} \cong \overline{TS}$ and $\overline{QT} \parallel \overline{RS}$

14 A standard-size golf ball has a diameter of 1.680 inches. The material used to make the golf ball weighs 0.6523 ounce per cubic inch. What is the weight, to the *nearest hundredth of an ounce*, of one golf ball?

(1) 1.10 (3)	;)	2.48
--------------	----	------

- (2) 1.62 (4) 3.81
- 15 Chelsea is sitting 8 feet from the foot of a tree. From where she is sitting, the angle of elevation of her line of sight to the top of the tree is 36°. If her line of sight starts 1.5 feet above ground, how tall is the tree, to the *nearest foot*?
 - (1) 8 (3) 6
 - (2) 7 (4) 4
- 16 In the diagram below of right triangle ABC, altitude \overline{CD} intersects hypotenuse \overline{AB} at D.

Which equation is always true?

(1)	$\frac{AD}{AC} =$	$\frac{CD}{BC}$	(3)	$\frac{AC}{CD} =$	$\frac{BC}{CD}$
	210	DC		UD	UD

(2)
$$\frac{AD}{CD} = \frac{BD}{CD}$$
 (4) $\frac{AD}{AC} = \frac{AC}{BD}$

17 A countertop for a kitchen is modeled with the dimensions shown below. An 18-inch by 21-inch rectangle will be removed for the installation of the sink.

What is the area of the top of the installed countertop, to the *nearest* square foot?

- $(1) \ 26 \qquad \qquad (3) \ 22$
- (2) 23 (4) 19
- **18** In the diagram below, \overline{BC} connects points *B* and *C* on the congruent sides of isosceles triangle *ADE*, such that $\triangle ABC$ is isosceles with vertex angle *A*.

If AB = 10, BD = 5, and DE = 12, what is the length of \overline{BC} ?

- (1) 6 (3) 8
- (2) 7 (4) 9

Use this space for computations.

19 In $\triangle ABC$ below, angle *C* is a right angle.

Which statement must be true?

- (1) $\sin A = \cos B$ (3) $\sin B = \tan A$ (2) $\sin A = \tan B$ (4) $\sin B = \cos B$
- **20** In right triangle *RST*, altitude \overline{TV} is drawn to hypotenuse \overline{RS} . If RV = 12 and RT = 18, what is the length of \overline{SV} ?

(1)	$6\sqrt{5}$	(3)	$6\sqrt{6}$
-----	-------------	-----	-------------

- (2) 15 (4) 27
- **21** What is the volume, in cubic centimeters, of a right square pyramid with base edges that are 64 cm long and a slant height of 40 cm?
 - (1) 8192.0 (3) 32,768.0
 - (2) $13,653.\overline{3}$ (4) $54,613.\overline{3}$

22 In the diagram below, chords \overline{PQ} and \overline{RS} of circle O intersect at T.

Use this space for computations.

Which relationship must always be true?

(1) $RT = TQ$	(3) RT + TS = PT + TQ
(2) $RT = TS$	(4) $RT \times TS = PT \times TQ$

23 A rhombus is graphed on the set of axes below.

Which transformation would carry the rhombus onto itself?

- (1) 180° rotation counterclockwise about the origin
- (2) reflection over the line $y = \frac{1}{2}x + 1$
- (3) reflection over the line y = 0
- (4) reflection over the line x = 0

24	A 15-foot ladder leans against a the ground. What is the horizon of the ladder, to the <i>nearest ter</i>	Use this space for computations.	
	 (1) 6.3 (2) 7.0 	(3) 12.9(4) 13.6	