| Name | Period | |--------------------------|--------| | Geometry | | | Weekly Homework 01242020 | | ## Question 1. Quadrilateral BCDE is shown on the coordinate grid. Keisha reflects the figure across the line y = x to create B'C'D'E'. Use the Connect Line tool to draw quadrilateral B'C'D'E'. ## Question 2. ## Triangle ABC is shown. Given: Triangle ABC is isosceles. Point D is the midpoint of \overline{AC} . Prove: ∠BAC ≅ ∠BCA Place reasons in the table to complete the proof. | Statements | Reasons | |---|--| | Triangle ABC is isosceles. D is the midpoint of AC. | 1. Given | | 2. 2. AD ≅ DC | 2. Definition of midpoint | | 3. 3. BA ≅ BC | 3. Definition of isosceles triangle | | 4. 4. BD exists. | A single line segment can be drawn between any two points. | | 5. 5. BD ≅ BD | 5. | | 6. 6. △ABD ≅ △CBD | 6. | | 7. 7. ∠BAC ≅ ∠BCA | 7. | | AA congruency postulate | Reflexive property | | |---|--------------------|--| | SAS congruency postulate | Symmetric property | | | SSS congruency postulate | Midpoint theorem | | | Corresponding parts of congruent triangles are congruent. | | | ## Question 3. Triangle PQR is shown, where \overline{ST} is parallel to \overline{RQ} . Marta wants to prove that $\frac{SR}{PS} = \frac{TQ}{PT}$. Place a statement or reason in each blank box to complete Marta's proof. | Statements | Reasons | | |---|--|--| | 1. ST ∥ RQ | 1. Given | | | 2. ∠PST ≅ ∠R and ∠PTS ≅ ∠Q | If two parallel lines are cut by a transversal, then corresponding angles are congruent. | | | ∆PQR ~ △PTS | 3. | | | 4. | 4. | | | 5. $PR = PS + SR$, $PQ = PT + TQ$ | 5. Segment addition postulate | | | $6. \frac{PS + SR}{PS} = \frac{PT + TQ}{PT}$ | 6. Substitution | | | $7. \frac{PS}{PS} + \frac{SR}{PS} = \frac{PT}{PT} + \frac{TQ}{PT}$ | 7. Commutative property of addition | | | $8. \frac{SR}{PS} = \frac{TQ}{PT}$ | 8. Subtraction property of equality | | | $\frac{PR}{PS} = \frac{PQ}{PT}$ | $\frac{PS}{SR} = \frac{PT}{ST}$ | ∠P ≅ ∠P | |---|---|---| | AA Similarity | ASA Similarity | SSS Similarity | | Reflexive property | Segment addition postulate | Corresponding sides of similar triangles are proportional. | | Corresponding sides of
similar triangles are
congruent. | If two parallel lines are cut by a transversal, then alternate interior angles are congruent. | If two parallel lines are cut by a
transversal, then alternate exterior
angles are congruent. | 37 On the set of axes below, solve the following system of equations graphically and state the coordinates of all points in the solution. $$(x + 3)^{2} + (y - 2)^{2} = 25$$ $$2y + 4 = -x$$