

Released Test Answer and Alignment Document

Mathematics – Geometry

Performance Based Assessment

The following pages include the answer key for all machine-scored items, followed by the rubrics for the hand-scored items.

- The rubrics show sample student responses. Other valid methods for solving the problem can earn full credit unless a specific method is required by the item.
- In items where the scores are awarded for full and partial credit, the definition of partial credit will be confirmed during range-finding (reviewing sets of real student work).
- If students make a computation error, they can still earn points for reasoning or modeling.

Item Number	Answer Key	Evidence Statement Key	Integrated Course Alignment
1.	A, B, D, E	G-SRT.2	Math 2
2.	B, D, E	G-SRT.8	Math 2
3.	The set of all points in a plane that are equidistant from a given point is called a circle •. The given point is called the center •.	G-CO.1	Math 1
4.	y	G-SRT.1b	Math 2

5.	A dilation of line ℓ with center A and a scale factor of 3 will	G-SRT.1a	Math 2
	produce a new line through point C^\prime , the image of point C,		
	with coordinates		
	(-4)) and with a slope of		
	-2 .		
6.	Because each triangle contains a right angle and a 36° angle, the triangles are	G-SRT.6	Math 2
	similar by AA similarity, and $\overline{AC} = \overline{DF} = [GH/G]$. The		
	length of the adjacent leg will be the same for any right triangle with a 36° angle.		
	The value of the ratio is defined to be the tangent of 36° .		
7.	Similar to Triangle ABC Not Similar to Triangle ABC	G-SRT.2	Math 2
	Multiply each side length by 3.5. Add 12 to each side length.		
	Divide each side length by 0.75.		
8.	375.3	G-SRT.8	Math 2
9		G-GPE 6	Math 3
2.	-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	0 01 2.0	ivituti 5
10.	Given distinct noncollinear points A, B, and C, the set of all points between A and C	G-CO.1	Math 1
	including A and C is a line segment .		
11	Part A: see rubric	HS D 2-1	Math 2
11.	Part B: see rubric	110.0.2 1	iviatii 2
12.	Part A: see rubric	HS.D.3-2	Math 2
	Part B: see rubric		
13.	See rubric	HS.C.14.2	Math 1
14	Dort A: soo mbrio		Moth 2
14.	Part B: see rubric	пз.D.2-11	
15.	See rubric	HS.C.15.14	Math 2
16.	Part A: see rubric	HS.C.13.3	Math 3
	Part B: see rubric		
17	Devit As and website		
1/.	Part A: see rubric	HS.C.18.2	
18.	See rubric	HS.D.1-2	Math 2

	#11 Part A
Score	Description
1	Student response includes the following element.
	 Modeling component = 1 point
	 Defining the variable and setting up the equation
	Sample Student Response:
	w(w + 20) + 1,280 = (w + 16)(w + 20), where w is the width of the
	queen-sized mattress
	OR
	16(w + 20) = 1,280, where w is the width of the queen-sized mattress
	Notes:
	 The variable must be defined or the point cannot be
	awarded.
	 Student should receive credit for any valid model written
	In terms of length.
	o The student can use one equation for the area of the king sized mattross, such as $A = (w \pm 16)(w \pm 20)$ as long
	King-sized matters, such as $\mathbf{A} = (w + 10)(w + 20)$, as long as the variable is defined
0	Student response is incorrect or irrelevant
Ū	#11 Part B
Score	Description
2	Student response includes the following 2 elements.
	 Computation component = 1 point
	 Correctly solves the equation and provides valid work
	Note: The student can earn points for Part B if the
	student correctly solves an incorrect equation from Part
	A.
	Modeling component = 1 point
	 Reporting the results
	Sample Student Response
	w(w+20) + 1,280 = (w+16)(w+20)
	$w^2 + 20w + 1,280 = w^2 + 36w + 320$
	960 = 16w
	<i>w</i> = 60
	The width of the queen-sized mattress is 60 inches. The length is
	t_{0} to upd by odding $\mathcal{D}(t)$ inches which gives $\mathcal{D}(t)$ inches () upon sized. (1)
	in a 20 in
	in. x 80 in.

	The length of the king-sized mattress is the same as the queen-sized
	mattress (80 inches). The width is found by adding 16 inches, which
	gives 76 inches. King-sized: 76 in. x 80 in.
1	Student response includes 1 of the 2 elements.
0	Student response is incorrect or irrelevant.

#12 Part A	
Score	Description
2	Student response includes the following 2 elements.
	 Computation component = 1 point
	 Correct rate: 62.8 feet per minute
	 Modeling component = 1 point
	 Correct work shown
	Sample Student Response:
	If it takes 30 seconds to make one revolution, then the merry-go-
	round would make 2 revolutions in a minute. The radius is 5 feet.
	So the circumference is $5(2)\pi = 10\pi$. So 2 revolutions would be
	20π.
	$20\pi \approx 62.8$ feet
	So the rate is about 62.8 feet per minute.
1	Student response includes 1 of the 2 elements.
0	Student response is incorrect or irrelevant.
	#12 Part B
Score	Description
1	Student response includes the following element.
	 Computation component = 1 point
	Machine Scored: (-5, 0)
0	Student response is incorrect or irrelevant.

#13 Rubric		
Score	Description	
3	Student response includes the following 3 elements.	
	 Reasoning component = 3 points 	
	 Correct and convincing reason explaining why Justine's 	
	claim for lines of symmetry is incorrect	
	 Correct and convincing reason explaining why Justine's 	
	claim for rotational symmetry is incorrect	
	 Correct use of notation and vocabulary to explain 	
	reasoning	
	Sample Student Response:	
	Justine is incorrect because there are other lines of symmetry	
	and rotational symmetry she did not consider.	
	Each line containing a vertex and <i>O</i> is a line of symmetry.	
	However, she did not account for three more lines of symmetry,	
	the lines containing the midpoints of the sides and O.	
	An angle with measure 60°, such as $\angle BOA$ does show rotational	
	symmetry and so does $120\degree$, $180\degree$, $240\degree$, $300\degree$, and $360\degree$.	
	There are additional angles that show rotational symmetry that	
	Justine did not include.	
2	Student includes a response to one or both of Justine's claims but	
	is not sufficiently convincing.	
1	Student response includes a quick assessment of the claims but	
	little to support the response.	
0	Student response is incorrect or irrelevant.	

	#14 Part A	
Score	Description	
4	Student response includes the following 4 elements.	
	 Modeling component = 4 points 	
	 Correct distance from the Sports Store to the Food 	
	Court: 759.74 feet	
	 Correct distance from the Entrance to the Food Court: 	
	1,771.2 feet	
	 Correct difference between the total distance from the Entrance to the Sports Store to the Food Court and the 	
	distance to the Sports Store to the Food Court and the	
	588 54 foot	
	 Correct setup of both equations 	
	Sample Student Response	
	Let $x =$ the distance from the Sports Store to the Food Court.	
	$\tan 25.4 - X$	
	$\frac{1125.4}{1600}$	
	Using trig ratios, $\tan 25.4(1600) = x$	
	759.74 = X	
	Using the Pythagorean theorem, I can determine the length of the diagonal walkway. Let $y =$ the distance from the Entrance to the Food Court. 1600 ² + 759.74 ² = y^2	
	$2560000 + 577205 = y^2$	
	$3137205 - v^2$	
	1771 O	
	$1/1.2 \approx y$	
	So, the total distance from the Entrance to the Food Court via the	
	distance from the Entrance diagonally to the Eood Court is about	
	1771 2 feet Therefore the difference is about 588 54 feet	
3	Student response includes 3 of the 4 elements.	
2	Student response includes 2 of the 4 elements.	
1	Student response includes 1 of the 4 elements.	
0	Student response is incorrect or irrelevant.	
	#14 Part B	
Score	Description	
2	Student response includes the following 2 elements.	
	 Modeling component = 2 points 	
	 Correct distance of walkway connecting the Electronics 	
	Store to the Restroom: 379.87 feet	

#15 Rubric	
Score	Description
4	Student response includes the following 4 elements.
	 Computation component = 1 point
	• Correct expression for n anchors: $22.1(n-1)$ feet
	Note: the coefficient can be rounded or truncated. Values of 22, 22.0, 22.06, and 22.07, etc. are acceptable
	• Modeling component = 3 points
	 Recognition that length of cable between two anchors can be thought of as the hypotenuse of a 65-25 right triangle
	 Use of appropriate trigonometric ratio
	 Recognition of pattern between anchors
	Sample Student Response:
	The right triangle formed by a line from the anchor perpendicular to the opposite pole and the cable connecting the two anchors has an angle of 25°. The length of the hypotenuse, h, could be found by using the cosine:
	$\cos 25^\circ = \frac{20}{h} \text{ so } h = \frac{20}{\cos 25^\circ} \approx 22.1$
	So between each pair of anchors, the length of the cable is 22.1 feet. For 2 anchors, the cable needed is 22.1 feet; for 3 anchors, 2(22.1) feet; 4 anchors, 3(22.1) feet; and so on. So for <i>n</i> anchors, there is 22.1($n - 1$) feet of cable.
3	Student response includes 3 of the 4 elements.
2	Student response includes 2 of the 4 elements.
1	Student response includes 1 of the 4 elements.
0	Student response is incorrect or irrelevant.

#16 Part A	
Score	Description
1	Student response includes the following element.
	 Computation component = 1 point
	o Machine Scored: 5
0	Student response is incorrect or irrelevant.
	#16 Part B
Score	Description
2	Student response includes the following 2 elements.
	• Reasoning component = 2 points
	 A correct expression that will guarantee that lines j and k are parallel
	 Correct mathematical support that includes an explanation/proof that the lines are parallel or an explanation of why the expression will guarantee that lines <i>j</i> and <i>k</i> will be parallel
	Sample Student Response:
	Two non-vertical lines are parallel if and only if they have the same slope. So lines <i>j</i> and <i>k</i> are parallel if $\frac{b-a}{x_2-x_1} = \frac{t-(a+n)}{x_2-x_1}$.
	AND
	t = b - a + (a + n) = b + n. So the expression that replaces t in order to guarantee the lines are parallel is $b + n$ or $n + b$.
1	Student response includes 1 of the 2 elements.
0	Student response is incorrect or irrelevant.

#17 Part A		
Score	Description	
1	Student response includes the following element.	
	 Computation component = 1 point 	
	 Machine Scored: C 	
0	Student response is incorrect or irrelevant.	
	#17 Part B	
Score	Description	
3	Student response includes the following 3 elements.	
	 Reasoning component = 2 points 	
	 Correct reasoning to find the length of the legs of 	
	isosceles triangle	
	 Correct reasoning to find the length of the base of the 	
	isosceles triangle	
	 Computation component = 1 point 	
	 Correct perimeter 	
	Sample Student Response:	
	If A is at the origin and C is at (12, 16), then I can form a right	
	triangle with the base leg being 12 and the height leg being 16.	
	Using the Pythagorean Theorem, I can find the hypotenuse to be	
	20, which becomes the length of the 2 equal sides of the	
	isosceles triangle. $(12^2 + 16^2 = 400 \Rightarrow \sqrt{400} = 20)$. I can find	
	the length of the base of $\triangle ABC$ by doubling the length of the	
	right triangle I found above. So the length of the base of ΔABC	
	is 24 (2 · 12 = 24). So the perimeter of ΔABC is 64 units.	
	(20 + 20 + 24 = 64).	
	OR	
	If A is at the origin and C is at (12, 16), then I can form an	
	isosceles triangle with leg AC and leg AB congruent. Using the	
	Pythagorean Theorem, AC equals 20,	
	$(12^2 + 16^2 = 400 \Rightarrow \sqrt{400} = 20)$, which becomes the length	
	of the 2 congruent leas of the isosceles triangle. This means B is	
	20 units away from A at (20, 0)	
	Using the Dythagorean Theorem again BC equals approximately	
	Using the rythagorean medicin again, be equals approximately (-2)	
	17.89 units $(8^2 + 16^2 = 320 \Rightarrow \sqrt{320} \approx 17.89)$.	
	So the perimeter of $\triangle ABC$ is approximately 57.89 units	
	(20 + 20 + 17.89 = 57.89).	

	#18 Rubric	
Score	Description	
6	Student response includes the following 6 elements.	
	• Modeling component: Volumes Part 1 = 2 points	
	 The correct volumes for the water currently in the pool and the capacity of the pool are shown with the formulas, setup, and work. 	
	 The correct volume for the part of the pool that is currently without water is shown with work as needed. 	
	• Calculation component: Conversion Part 2 = 1 point	
	 Correct conversion of cubic feet to gallons or gallons to cubic feet 	
	 Modeling component: Draw conclusions Part 3 = 1 point 	
	 Correct number of people is determined 	
	 Modeling component: Interpretation Part 4 = 1 point 	
	 The number of people rounded to a whole person is given and is supported by work. 	
	Note: The interpretation should use a number that has been rounded down from the result of the model the student uses.	
	• Calculation component: Perform operations Part 5 = 1 point	
	 All computations are correct. 	
	Note: Since incorrect calculations will cause a deduction in Part 1, this is applied to Part 2 – Part 4. Calculations are expected and should be correct. If calculations are missing or incorrect, this part will not receive credit.	
	Sample Student Response 1:	
	The total volume of the pool is $\pi(6^2)(4) \approx 452.39$ cubic feet. The volume of the water in the pool is $\pi(6^2)(3.5) \approx 395.84$ cubic feet. Therefore, there is an additional $452.39 - 395.84 = 56.55$ cubic feet of space in the pool.	
	Given that 1 cubic foot is 7.48 gallons, 56.55 cubic feet is about 422.99 gallons.	

	Let x represent the number of people in the water. $\frac{1}{18} = \frac{x}{422.99}$
	<i>x</i> ≈ 23.5
	This means approximately 23 classmates could be in the pool before the water begins to overflow.
	Sample Student Response 2:
	The total volume of the pool is $\pi(6^2)(4) \approx 452.39$ cubic feet. The volume of the water in the pool is $\pi(6^2)(3.5) \approx 395.84$ cubic feet. Therefore, there is an additional $452.39 - 395.84 = 56.55$ cubic feet of space in the pool.
	Given that 1 cubic foot is 7.48 gallons, 1 gallon is about 0.13 cubic feet. Each person would displace about 2.34 cubic feet of water.
	Let x represent the number of people in the water. $\frac{1}{2.34} = \frac{x}{56.55}$
	<i>x</i> ≈ 24.2
	This means approximately 24 classmates could be in the pool before the water begins to overflow.
	Note: Because of rounding issues, answers will vary on the task. However, because the gallon conversion was given as 7.48, the response must use 7.48 in the conversion component.
5	Student response includes 5 of the 6 elements
4	Student response includes 4 of the 6 elements
3	Student response includes 3 of the 6 elements.
2	Student response includes 2 of the 6 elements.
1	Student response includes 1 of the 6 elements.
0	Student response is incorrect or irrelevant.