Geometry Daily Quiz 12172019

Question 1.

The lengths of two sides of a triangle are 7 and 11. Which inequality represents all possible values for x, the length of the third side of the triangle?

$(1) \ 4 \le x \le 18$	$(3) 4 \le x < 18$
(2) $4 < x \le 18$	(4) $4 < x < 18$

Question 2.

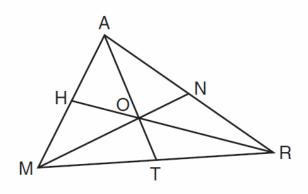
Which statement is the inverse of "If x + 3 = 7, then x = 4"?

(1) If
$$x = 4$$
, then $x + 3 = 7$.

- (2) If $x \neq 4$, then $x + 3 \neq 7$.
- (3) If $x + 3 \neq 7$, then $x \neq 4$.
- (4) If x + 3 = 7, then $x \neq 4$.

Question 3.

In the diagram below of $\triangle MAR$, medians \overline{MN} , \overline{AT} , and \overline{RH} intersect at O.



If TO = 10, what is the length of \overline{TA} ?

(1)	30	(3) 20
(2)	25	(4) 15

Question 4.

What is an equation of the line that passes through the point (4,5) and is parallel to the line whose equation is $y = \frac{2}{3}x - 4$?

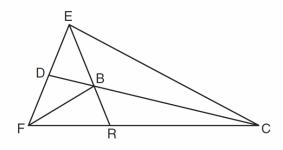
- (1) 2y + 3x = 11 (3) 3y 2x = 2
- (2) 2y + 3x = 22 (4) 3y 2x = 7

Question 5.

The measures of the angles of a triangle are in the ratio 5:6:7. Determine the measure, in degrees, of the *smallest* angle of the triangle.

Question 6.

In the diagram below, point B is the incenter of $\triangle FEC$, and \overline{EBR} , \overline{CBD} , and \overline{FB} are drawn.

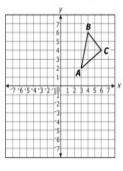


If $m \angle FEC = 84$ and $m \angle ECF = 28$, determine and state $m \angle BRC$.

The incenter of a triangle is the point where the three angle bisectors meet.

Question 7.

Triangle ABC is graphed in the xy-coordinate plane, as shown.

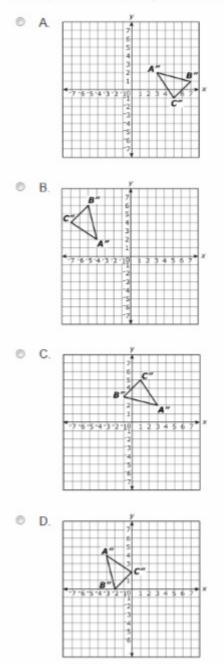


Triangle ABC is reflected across the x-axis to form triangle A'B'C'. What are the coordinates of C' after the reflection?

- A. (-6, 4)
 B. (3, -2)
- ◎ C. (4, -6)
- ◎ D. (6, -4)

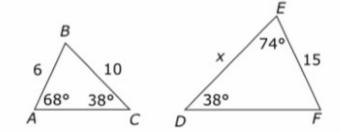
Question 8. The triangle ABC referred to below is the triangle ABC in Question 7

Triangle ABC in the xy-coordinate plane will be rotated 90° counterclockwise about point A to form triangle A''B''C''. Which graph represents A''B''C''?

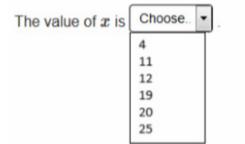


Question 9.

Given the two triangles shown, find the value of x.

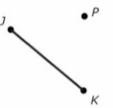


Select from the drop-down menu to correctly complete the sentence.



Question 10.

The figure shows line segment JK and a point P that is not collinear with points J and K.

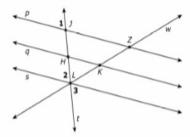


Suppose that line segment J'K' is the image of line segment JK after a dilation with scale factor 0.5 that is centered at point P. Which statement **best** describes the position of line segment J'K'?

- A. Line segment J'K' is parallel to line segment JK.
- B. Line segment J'K' is perpendicular to line segment JK.
- C. Line segment J'K' intersects line segment JK at one point, but it is not perpendicular to line segment JK.
- D. Line segment J'K' lies on the same line as line segment JK.

Bonus.

In the figure, p || s. Transversals t and w intersect at point L.



Part A

Statement	Reason	
1) <i>p</i> <i>s</i>	Given	
2) ∠1 ≡ ∠2	Corresponding angles along parallel lines are congruent.	
3) ∠2 ≅ ∠3	?	
4) ∠1 ≅ ∠3	Congruence of angles is transitive.	

What is the missing reason in step 3?

- A. Alternate interior angles along parallel lines are congruent.
- B. Alternate exterior angles along parallel lines are congruent.
- C. Corresponding angles along parallel lines are congruent.
- D. Vertical angles are congruent.

Part B

Consider the proof of $p \parallel q$ given that $\triangle LHK \sim \triangle LJZ$.

If $\triangle LHK \sim \triangle LJZ$, then $\angle LHK \cong \angle LJZ$ because corresponding angles in similar triangles are congruent.

Which statement concludes the proof?

- A. If ∠LHK ≅ ∠LJZ, then p || q because when base angles are congruent, the lines are parallel.
- ◎ B. If $\angle LHK \cong \angle LJZ$, then $p \parallel q$ because when corresponding angles are congruent, the lines are parallel.
- C. If ∠ LHK ≅ ∠ LKH, then p || q because when alternate exterior angles are congruent, the lines are parallel.
- ◎ D. If ∠ JLZ ≅ ∠ HLK, then p || q because when corresponding angles are congruent, the lines are parallel.

High School Mathematics Assessment Reference Sheet

- 1 inch = 2.54 centimeters 1 meter = 39.37 inches 1 mile = 5280 feet 1 mile = 1760 yards 1 mile = 1.609 kilometers
- 1 kilometer = 0.62 mile 1 pound = 16 ounces 1 pound = 0.454 kilograms 1 kilogram = 2.2 pounds

1 ton = 2000 pounds

- 1 cup = 8 fluid ounces 1 pint = 2 cups
- 1 quart = 2 pints
- 1 gallon = 4 quarts
- 1 gallon = 3.785 liters
- 1 liter = 0.264 gallons
- 1 liter = 1000 cubic centimeters

Triangle	$A = \frac{1}{2}bh$
Parallelogram	A = bh
Circle	$A = \pi r^2$
Circle	$C = \pi d$ or $C = 2\pi r$
General Prisms	V = Bh
Cylinder	$V = \pi r^2 h$
Sphere	$V = \frac{4}{3}\pi r^3$
Cone	$V = \frac{1}{3}\pi r^2 h$
Pyramid	$V = \frac{1}{3}Bh$

Quadratic Formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Arithmetic Sequence	$a_n = a_1 + (n-1)d$
Geometric Sequence	$a_n = a_1 r^{n-1}$
Geometric Series	$S_n = \frac{a_1 - a_1 r^n}{1 - r}$ where $r \neq 1$
Radians	$1 \operatorname{radian} = \frac{180}{\pi} \operatorname{degrees}$
Degrees	1 degree = $\frac{\pi}{180}$ radians

942260 1 2 3 4 5 A B C D E Printed in the USA ISD10957