Geometry Daily Quiz 12092019

Question 1.

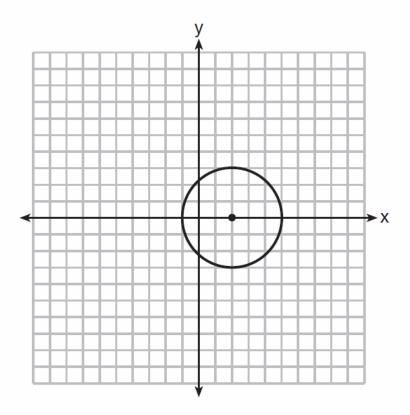
In all isosceles triangles, the exterior angle of a base angle must always be

- (1) a right angle
- (2) an acute angle
- (3) an obtuse angle
- (4) equal to the vertex angle

Question 2.

If $\triangle W'X'Y'$ is the image of $\triangle WXY$ after the transformation $R_{90^{\circ}}$, which statement is false?

(1) XY = X'Y'


(3) $\triangle WXY \cong \triangle W'X'Y'$

(2) $\overline{WX} \parallel \overline{W'X'}$

(4) $m \angle XWY = m \angle X'W'Y'$

Question 3.

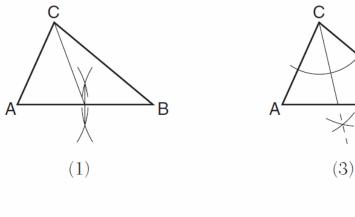
Which equation represents the circle shown in the graph below?

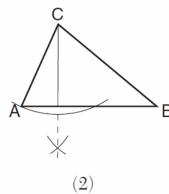
- (1) $(x-2)^2 + y^2 = 9$ (3) $(x-2)^2 + y^2 = 3$
- (2) $(x + 2)^2 + y^2 = 9$ (4) $(x + 2)^2 + y^2 = 3$

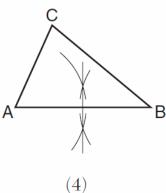
Question 4.

In quadrilateral ABCD, each diagonal bisects opposite angles. If $m \angle DAB = 70$, then ABCD must be a

(1) rectangle


(3) rhombus


(2) trapezoid


(4) square

Question 5.

Which diagram illustrates a correct construction of an altitude of $\triangle ABC$?

Question 6.

From external point A, two tangents to circle O are drawn. The points of tangency are B and C. Chord \overline{BC} is drawn to form $\triangle ABC$. If $m \angle ABC = 66$, what is $m \angle A$?

(1) 33

(3) 57

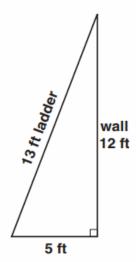
(2) 48

(4) 66

Question 7.

Point A lies on plane \mathcal{P} . How many distinct lines passing through point A are perpendicular to plane \mathcal{P} ?

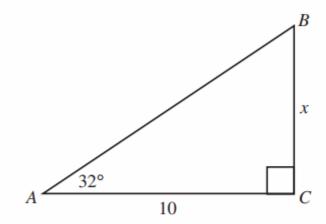
(1) 1


(3) 0

(2) 2

(4) infinite

Question 8.

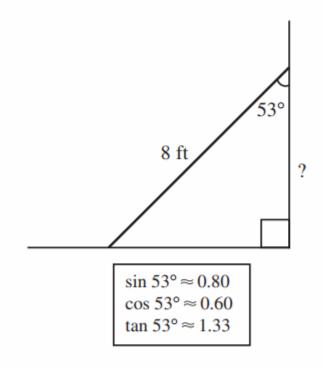

A 13-foot ladder is leaning against a brick wall. The top of the ladder touches the wall 12 feet (ft) above the ground. The bottom of the ladder is 5 ft from the bottom of the wall. What is the sine of the angle formed by the ground and the base of the ladder?

- $\mathbf{A} = \frac{5}{12}$
- $\mathbf{B} = \frac{5}{13}$
- $C = \frac{12}{13}$
- **D** $\frac{13}{5}$

Question 9.

In the accompanying diagram, $m\angle A = 32^{\circ}$ and AC = 10. Which equation could be used to find x in $\triangle ABC$?

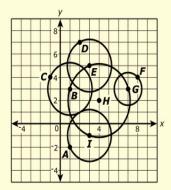
A
$$x = 10 \sin 32^{\circ}$$


B
$$x = 10 \cos 32^{\circ}$$

C
$$x = 10 \tan 32^{\circ}$$

$$\mathbf{D} \qquad x = \frac{10}{\cos 32^{\circ}}$$

Question 10.


The diagram shows an 8-foot ladder leaning against a wall. The ladder makes a 53° angle with the wall. Which is closest to the distance up the wall the ladder reaches?

- **A** 3.2 ft
- **B** 4.8 ft
- C 6.4 ft
- **D** 9.6 ft

Bonus.

In the xy-coordinate plane shown, points B, E, G, and I are on the circle with center H.

Part A

What is an equation for the circle with center H?

O A.
$$(x-4)^2 + (y-2)^2 = \sqrt{10}$$

O B.
$$(x-4)^2 + (y-2)^2 = 10$$

O.
$$(x+4)^2 + (y+2)^2 = \sqrt{10}$$

O D.
$$(x+4)^2 + (y+2)^2 = 10$$

Part B

The equation $x^2+y^2-6x+2y+5=0$ represents the circle with which center?

You must show your working to get your points for this problem.

High School Mathematics Assessment Reference Sheet

1 inch = 2.54 centimeters 1 kilometer = 0.62 mile 1 cup = 8 fluid ounces 1 meter = 39.37 inches 1 pound = 16 ounces 1 pint = 2 cups 1 quart = 2 pints 1 mile = 5280 feet 1 pound = 0.454 kilograms 1 mile = 1760 yards 1 kilogram = 2.2 pounds 1 gallon = 4 quarts 1 ton = 2000 pounds 1 mile = 1.609 kilometers 1 gallon = 3.785 liters 1 liter = 0.264 gallons

1 liter = 1000 cubic centimeters

Triangle	$A = \frac{1}{2}bh$
Parallelogram	A = bh
Circle	$A = \pi r^2$
Circle	$C = \pi d$ or $C = 2\pi r$
General Prisms	V = Bh
Cylinder	$V = \pi r^2 h$
Sphere	$V = \frac{4}{3}\pi r^3$
Cone	$V = \frac{1}{3}\pi r^2 h$
Pyramid	$V = \frac{1}{3}Bh$

Quadratic Formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Arithmetic Sequence	$a_n = a_1 + (n-1)d$
Geometric Sequence	$a_n = a_1 r^{n-1}$
Geometric Series	$S_n = \frac{a_1 - a_1 r^n}{1 - r}$ where $r \neq 1$
Radians	1 radian = $\frac{180}{\pi}$ degrees
Degrees	1 degree = $\frac{\pi}{180}$ radians

