Geometry Daily Quiz 12052019

Question 1.

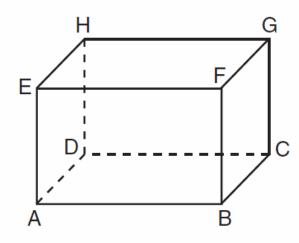
Quadrilateral ABCD undergoes a transformation, producing quadrilateral A'B'C'D'. For which transformation would the area of A'B'C'D' not be equal to the area of ABCD?

- (1) a rotation of 90° about the origin
- (2) a reflection over the y-axis
- (3) a dilation by a scale factor of 2
- (4) a translation defined by $(x,y) \rightarrow (x+4,y-1)$

Question 2.

The diameter of a sphere is 12 inches. What is the volume of the sphere to the *nearest cubic inch*?

(1) 288


(3) 905

(2) 452

(4) 7,238

Question 3.

A right rectangular prism is shown in the diagram below.

Which line segments are coplanar?

(1) \overline{EF} and \overline{BC}

(3) \overline{GH} and \overline{FB}

(2) \overline{HD} and \overline{FG}

(4) \overline{EA} and \overline{GC}

Question 4.

What are the coordinates of the image of point A(2,-7) under the translation $(x,y) \to (x-3,y+5)$?

(1) (-1,-2)

(3) (5,-12)

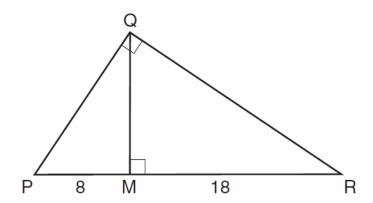
(2) (-1,2)

(4) (5,12)

Question 5.

Point M is the midpoint of \overline{AB} . If the coordinates of M are (2,8) and the coordinates of A are (10,12), what are the coordinates of B?

(1) (6,10)


(3) (-8, -4)

(2) (-6,4)

(4) (18,16)

Question 6.

In the diagram below, \overline{QM} is an altitude of right triangle PQR, PM=8, and RM=18.

What is the length of \overline{QM} ?

(1) 20

(3) 12

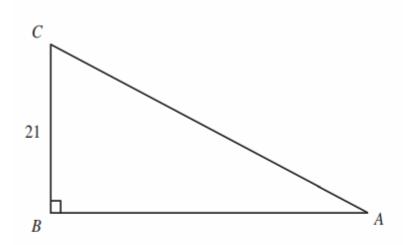
(2) 16

(4) 10

Question 7.

What is an equation of the line that passes through the point (2,4) and is perpendicular to the line whose equation is 3y = 6x + 3?

(1)
$$y = -\frac{1}{2}x + 5$$


(3)
$$y = 2x - 6$$

$$(2) \ y = -\frac{1}{2}x + 4$$

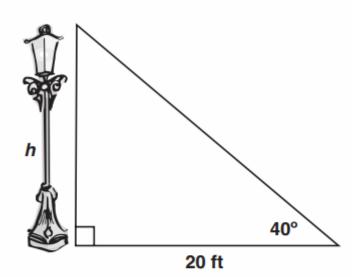
$$(4) \ y = 2x$$

Question 8.

In the figure below, $\sin A = 0.7$.

What is the length of \overline{AC} ?

A 14.7

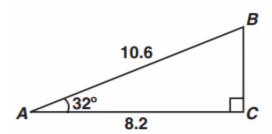

B 21.7

C 30

D 32

Question 9.

Approximately how many feet tall is the streetlight?



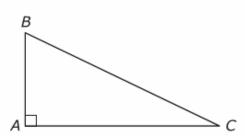
 $\sin 40^{\circ} \approx 0.64$ $\cos 40^{\circ} \approx 0.77$ $\tan 40^{\circ} \approx 0.84$

- **A** 12.8
- **B** 15.4
- C 16.8
- **D** 23.8

Question 10.

Right triangle ABC is pictured below.

Which equation gives the correct value for BC?


$$\mathbf{A} \quad \sin 32^{\circ} = \frac{BC}{8.2}$$

$$\mathbf{B} \quad \cos 32^{\circ} = \frac{BC}{10.6}$$

C
$$\tan 58^\circ = \frac{8.2}{BC}$$

$$\mathbf{D} \quad \sin 58^\circ = \frac{BC}{10.6}$$

Bonus.

In right triangle ABC, $m\angle B \neq m\angle C$. Let $\sin B = r$ and $\cos B = s$. What is $\sin C - \cos C$?

You must show your working to get your points for this problem.

High School Mathematics Assessment Reference Sheet

1 inch = 2.54 centimeters 1 kilometer = 0.62 mile 1 cup = 8 fluid ounces 1 meter = 39.37 inches 1 pound = 16 ounces 1 pint = 2 cups 1 quart = 2 pints 1 mile = 5280 feet 1 pound = 0.454 kilograms 1 mile = 1760 yards 1 kilogram = 2.2 pounds 1 gallon = 4 quarts 1 ton = 2000 pounds 1 mile = 1.609 kilometers 1 gallon = 3.785 liters 1 liter = 0.264 gallons

1 liter = 1000 cubic centimeters

Triangle	$A = \frac{1}{2}bh$
Parallelogram	A = bh
Circle	$A = \pi r^2$
Circle	$C = \pi d$ or $C = 2\pi r$
General Prisms	V = Bh
Cylinder	$V = \pi r^2 h$
Sphere	$V = \frac{4}{3}\pi r^3$
Cone	$V = \frac{1}{3}\pi r^2 h$
Pyramid	$V = \frac{1}{3}Bh$

Quadratic Formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Arithmetic Sequence	$a_n = a_1 + (n-1)d$
Geometric Sequence	$a_n = a_1 r^{n-1}$
Geometric Series	$S_n = \frac{a_1 - a_1 r^n}{1 - r}$ where $r \neq 1$
Radians	1 radian = $\frac{180}{\pi}$ degrees
Degrees	1 degree = $\frac{\pi}{180}$ radians

