
Geometry Daily Quiz 12042019

Question 1.

In the diagram below of $\triangle ABC$, $\overline{AB} \cong \overline{AC}$, $m \angle A = 3x$, and $m \angle B = x + 20$.

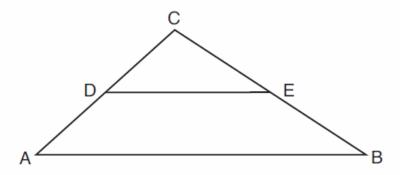
Question 2.

For which polygon does the sum of the measures of the interior angles equal the sum of the measures of the exterior angles?

- (1) hexagon (3) quadrilateral
- (2) pentagon (4) triangle

Question 3.

The slope of line ℓ is $-\frac{1}{3}$. What is an equation of a line that is perpendicular to line ℓ ?


(1) $y + 2 = \frac{1}{3}x$ (2) -2x + 6 = 6y(3) 9x - 3y = 27(4) 3x + y = 0 Question 4.

Which type of triangle can be drawn using the points (-2,3), (-2,-7), and (4,-5)?

- (1) scalene (3) equilateral
- (2) isosceles (4) no triangle can be drawn

Question 5.

In the diagram below, \overline{DE} joins the midpoints of two sides of $\triangle ABC$.

Which statement is not true?

- (1) $CE = \frac{1}{2}CB$
- (2) $DE = \frac{1}{2}AB$

(3) area of
$$\triangle CDE = \frac{1}{2}$$
 area of $\triangle CAB$

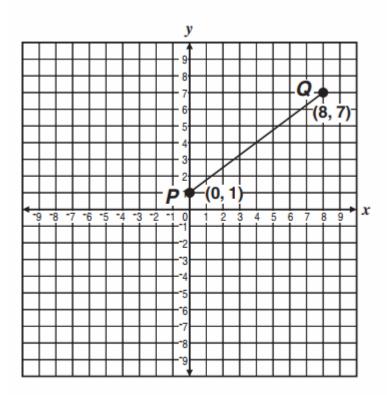
(4) perimeter of $\triangle CDE = \frac{1}{2}$ perimeter of $\triangle CAB$

Question 6.

Which equation represents the line that is perpendicular to 2y = x + 2 and passes through the point (4,3)?

(1) $y = \frac{1}{2}x - 5$ (3) y = -2x + 11(2) $y = \frac{1}{2}x + 1$ (4) y = -2x - 5

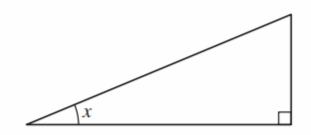
Question 7.


Write the negation of the statement "2 is a prime number," and determine the truth value of the negation.

Question 8.

The point (-3, 2) lies on a circle whose equation is $(x + 3)^2 + (y + 1)^2 = r^2$. Which of the following must be the radius of the circle?

A 3 **B** $\sqrt{10}$ **C** 9 **D** 10 Question 9.


What is the length of line segment \overline{PQ} shown below?

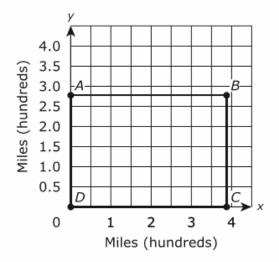
- A 9 units
- B 10 units
- C 13 units
- D 14 units

Question 10.

In the figure below, if $\sin x = \frac{5}{13}$, what are $\cos x$ and $\tan x$?

A
$$\cos x = \frac{12}{13}$$
 and $\tan x = \frac{5}{12}$

B
$$\cos x = \frac{12}{13}$$
 and $\tan x = \frac{12}{5}$


C
$$\cos x = \frac{13}{12}$$
 and $\tan x = \frac{5}{12}$

D
$$\cos x = \frac{13}{12}$$
 and $\tan x = \frac{13}{5}$

Bonus.

Use the information provided to answer Part A and Part B for question 43.

The figure shows rectangle *ABCD* in the coordinate plane with point *A* at (0, 2.76), *B* at (3.87, 2.76), *C* at (3.87, 0), and *D* at the origin. Rectangle *ABCD* can be used to approximate the size of the state of Colorado with the *x* and *y* scales representing hundreds of miles.

43. Part A

Based on the information given, how many miles is the perimeter of Colorado?

Enter your answer in the box.

Part B

At the end of 2010, the population of Colorado was 5,029,196 people. Based on the information given, what was the population density at the end of 2010?

- A. 25 people per square mile
- B. 47 people per square mile
- C. 2,269 people per square mile
- **D.** 7,586 people per square mile

You must show your working to get your points for this problem.

High School Mathematics Assessment Reference Sheet

- 1 inch = 2.54 centimeters 1 meter = 39.37 inches 1 mile = 5280 feet
- 1 kilometer = 0.62 mile 1 pound = 16 ounces
- . t 1 pound = 0
- 1 mile = 1760 yards
- 1 mile = 1.609 kilometers
- 1 pound = 0.454 kilograms 1 kilogram = 2.2 pounds
- 1 ton = 2000 pounds
- 1 pint = 2 cups 1 quart = 2 pints 1 gallon = 4 quarts
- 1 gallon = 3.785 liters
- 1 liter = 0.264 gallons

1 cup = 8 fluid ounces

1 liter = 1000 cubic centimeters

Triangle	$A = \frac{1}{2}bh$
Parallelogram	A = bh
Circle	$A = \pi r^2$
Circle	$C = \pi d$ or $C = 2\pi r$
General Prisms	V = Bh
Cylinder	$V = \pi r^2 h$
Sphere	$V = \frac{4}{3}\pi r^3$
Cone	$V = \frac{1}{3}\pi r^2 h$
Pyramid	$V = \frac{1}{3}Bh$

Quadratic Formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Arithmetic Sequence	$a_n = a_1 + (n-1)d$
Geometric Sequence	$a_n = a_1 r^{n-1}$
Geometric Series	$S_n = \frac{a_1 - a_1 r^n}{1 - r}$ where $r \neq 1$
Radians	$1 \text{ radian} = \frac{180}{\pi} \text{ degrees}$
Degrees	1 degree = $\frac{\pi}{180}$ radians

942260 1 2 3 4 5 A B C D E Printed in the USA ISD10957