Geometry **Daily Quiz 12032019**

Question 1.

A sphere is inscribed inside a cube with edges of 6 cm. In cubic centimeters, what is the volume of the sphere, in terms of π ?

(1) 12π

(3) 48π

(2) 36π

 $(4) 288\pi$

Question 2.

Scalene triangle ABC is similar to triangle DEF. Which statement is false?

(1)
$$AB : BC = DE : EF$$
 (3) $\angle ACB \cong \angle DFE$

$$(3) \ \angle ACB \cong \angle DFE$$

(2)
$$AC: DF = BC: EF$$
 (4) $\angle ABC \cong \angle EDF$

$$(4) \ \angle ABC \cong \angle EDF$$

Question 3.

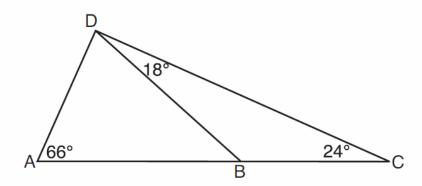
Which equation represents a line that is parallel to the line whose equation is $y = \frac{3}{2}x - 3$ and passes through the point (1,2)?

$$(1) \ \ y = \frac{3}{2}x + \frac{1}{2}$$

(3)
$$y = \frac{3}{2}x - 2$$

$$(2) \ \ y = \frac{2}{3}x + \frac{4}{3}$$

(4)
$$y = -\frac{2}{3}x + \frac{8}{3}$$


Question 4.

Lines a and b intersect at point P. Line c passes through P and is perpendicular to the plane containing lines a and b. Which statement must be true?

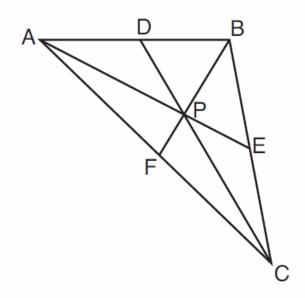
- (1) Lines a, b, and c are coplanar.
- (2) Line a is perpendicular to line b.
- (3) Line c is perpendicular to both line a and line b.
- (4) Line c is perpendicular to line a or line b, but not both.

Question 5.

As shown in the diagram of $\triangle ACD$ below, B is a point on \overline{AC} and \overline{DB} is drawn.

If $m\angle A = 66$, $m\angle CDB = 18$, and $m\angle C = 24$, what is the longest side of $\triangle ABD$?

 $(1) \ \overline{AB}$


 $(3) \ \overline{AD}$

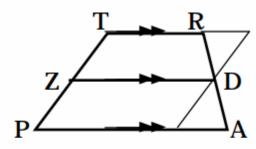
(2) \overline{DC}

(4) \overline{BD}

Question 6.

In $\triangle ABC$ shown below, P is the centroid and BF = 18.

What is the length of \overline{BP} ?

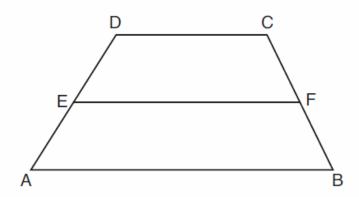

(1) 6

 $(3) \ 3$

(2) 9

(4) 12

Question 7.



TRAPEZOID MEDIAN THM.: The median of a trapezoid is the average of the two parallel bases and parallel to each base.

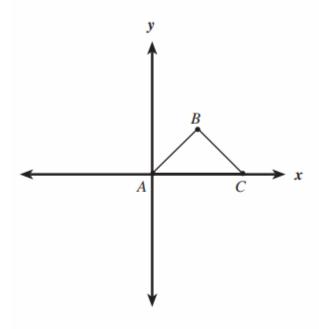
$$//\overline{ZD}//$$

$$=\frac{TR+AP}{2}$$

In the diagram below, \overline{EF} is the median of trapezoid ABCD.

If AB = 5x - 9, DC = x + 3, and EF = 2x + 2, what is the value of x?

(1) 5

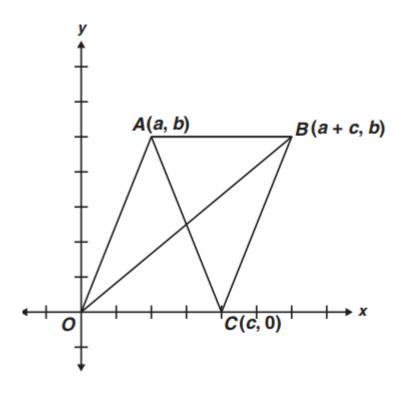

(3) 7

(2) 2

(4) 8

Question 8.

The diagram shows $\triangle ABC$.



Which statement would prove that $\triangle ABC$ is a right triangle?

- A (slope \overline{AB})(slope \overline{BC}) = 1
- B $(\text{slope } \overline{AB})(\text{slope } \overline{BC}) = -1$
- C distance from A to B = distance from B to C
- **D** distance from A to B = (distance from B to C)

Question 9.

Figure ABCO is a parallelogram.

What are the coordinates of the point of intersection of the diagonals?

$$\mathbf{A} \quad \left(\frac{a}{2}, \frac{b}{2}\right)$$

$$\mathbf{B} \quad \left(\frac{c}{2}, \frac{b}{2}\right)$$

$$C = \left(\frac{a+c}{2}, \frac{b}{2}\right)$$

$$\mathbf{D} \quad \left(\frac{a+c}{2}, \frac{a+b}{2}\right)$$

Question 10.

What type of triangle is formed by the points

A(4,2), B(6,-1), and C(-1,3)?

- A right
- B equilateral
- C isosceles
- D scalene

Bonus.

Use the information provided to answer Part A and Part B for question 2.

The equation $x^2 + y^2 - 4x + 2y = b$ describes a circle.

2. Part A

Determine the y-coordinate of the center of the circle.

Enter your answer in the box.

Part B

The radius of the circle is 7 units. What is the value of b in the equation? Enter your answer in the box.

You must show your working to get your points for this problem.

High School Mathematics Assessment Reference Sheet

1 inch = 2.54 centimeters 1 kilometer = 0.62 mile 1 cup = 8 fluid ounces 1 meter = 39.37 inches 1 pound = 16 ounces 1 pint = 2 cups 1 quart = 2 pints 1 mile = 5280 feet 1 pound = 0.454 kilograms 1 mile = 1760 yards 1 kilogram = 2.2 pounds 1 gallon = 4 quarts 1 ton = 2000 pounds 1 mile = 1.609 kilometers 1 gallon = 3.785 liters 1 liter = 0.264 gallons

1 liter = 1000 cubic centimeters

Triangle	$A = \frac{1}{2}bh$
Parallelogram	A = bh
Circle	$A = \pi r^2$
Circle	$C = \pi d$ or $C = 2\pi r$
General Prisms	V = Bh
Cylinder	$V = \pi r^2 h$
Sphere	$V = \frac{4}{3}\pi r^3$
Cone	$V = \frac{1}{3}\pi r^2 h$
Pyramid	$V = \frac{1}{3}Bh$

Quadratic Formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Arithmetic Sequence	$a_n = a_1 + (n-1)d$
Geometric Sequence	$a_n = a_1 r^{n-1}$
Geometric Series	$S_n = \frac{a_1 - a_1 r^n}{1 - r}$ where $r \neq 1$
Radians	1 radian = $\frac{180}{\pi}$ degrees
Degrees	1 degree = $\frac{\pi}{180}$ radians

