Geometry Daily Quiz 11222019

Question 1.

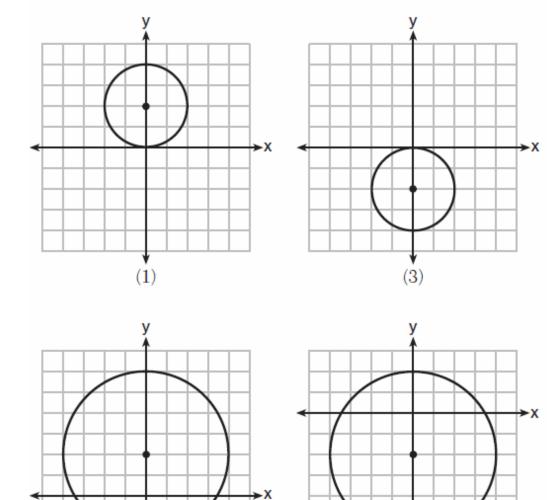
What is the difference between the sum of the measures of the interior angles of a regular pentagon and the sum of the measures of the exterior angles of a regular pentagon?

(1) 36

(3) 108

(2) 72

(4) 180

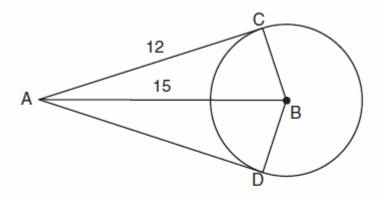

Question 2.

If line ℓ is perpendicular to distinct planes $\mathcal P$ and Q, then planes $\mathcal P$ and Q

- (1) are parallel
- (2) contain line ℓ
- (3) are perpendicular
- (4) intersect, but are not perpendicular

Question 3.

Which graph represents a circle whose equation is $x^2 + (y-2)^2 = 4$?



(2)

(4)

Question 4.

In the diagram below, \overline{AC} and \overline{AD} are tangent to circle B at points C and D, respectively, and \overline{BC} , \overline{BD} , and \overline{BA} are drawn.

(Not drawn to scale)

If AC = 12 and AB = 15, what is the length of \overline{BD} ?

(1) 5.5

(3) 12

(2) 9

(4) 18

Question 5.

Triangle ABC has vertices A(0,0), B(6,8), and C(8,4). Which equation represents the perpendicular bisector of \overline{BC} ?

(1)
$$y = 2x - 6$$

(3)
$$y = \frac{1}{2}x + \frac{5}{2}$$

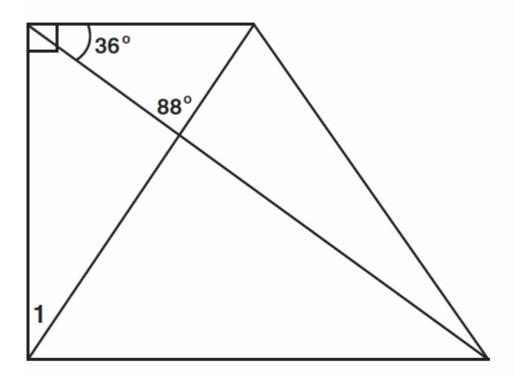
$$(2) \ y = -2x + 4$$

(2)
$$y = -2x + 4$$
 (4) $y = -\frac{1}{2}x + \frac{19}{2}$

Question 6.

Find, in simplest radical form, the length of the line segment with endpoints whose coordinates are (-1,4) and (3,-2).

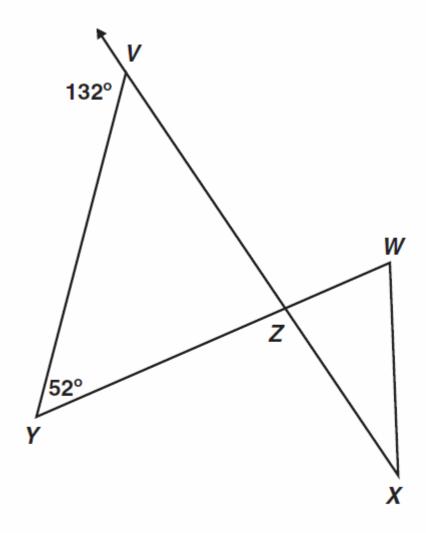
Show how you got your answer.


Question 7.

A regular polygon has 12 sides. What is the measure of each exterior angle?

- **A** 15°
- **B** 30°
- C 45°
- **D** 60°

Question 8.


What is $m \angle 1$?

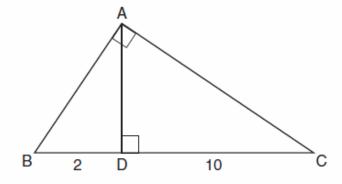
- **A** 34°
- **B** 56°
- **C** 64°
- **D** 92°

Question 9.

What is $m \angle WZX$?

- **A** 80°
- **B** 90°
- **C** 100°
- **D** 110°

Question 10.


What is the measure of an exterior angle of a regular hexagon?

- **A** 30°
- **B** 60°
- C 120°
- **D** 180°

Explain how you arrived at your answer. Just looking it up on the internet is not enough.

Bonus

Triangle ABC shown below is a right triangle with altitude \overline{AD} drawn to the hypotenuse \overline{BC} .

If BD = 2 and DC = 10, what is the length of \overline{AB} ?

(1) $2\sqrt{2}$

(3) $2\sqrt{6}$

(2) $2\sqrt{5}$

(4) $2\sqrt{30}$

Explain how you arrived at your answer.

High School Mathematics Assessment Reference Sheet

1 inch = 2.54 centimeters

1 meter = 39.37 inches 1 mile = 5280 feet

1 mile = 1760 yards 1 mile = 1.609 kilometers 1 kilometer = 0.62 mile

1 pound = 16 ounces

1 pound = 0.454 kilograms 1 kilogram = 2.2 pounds

1 ton = 2000 pounds

1 cup = 8 fluid ounces

1 pint = 2 cups

1 quart = 2 pints

1 gallon = 4 quarts 1 gallon = 3.785 liters

1 liter = 0.264 gallons

1 liter = 1000 cubic centimeters

Triangle	$A = \frac{1}{2}bh$
Parallelogram	A = bh
Circle	$A = \pi r^2$
Circle	$C = \pi d$ or $C = 2\pi r$
General Prisms	V = Bh
Cylinder	$V = \pi r^2 h$
Sphere	$V = \frac{4}{3}\pi r^3$
Cone	$V = \frac{1}{3}\pi r^2 h$
Pyramid	$V = \frac{1}{3}Bh$

Quadratic Formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Arithmetic Sequence	$a_n = a_1 + (n-1)d$
Geometric Sequence	$a_n = a_1 r^{n-1}$
Geometric Series	$S_n = \frac{a_1 - a_1 r^n}{1 - r}$ where $r \neq 1$
Radians	1 radian = $\frac{180}{\pi}$ degrees
Degrees	$1 \text{ degree} = \frac{\pi}{180} \text{ radians}$

