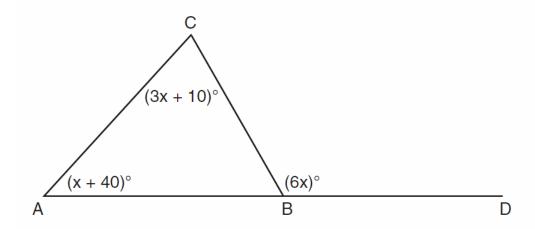
Geometry Daily Quiz 11212019

Question 1.

If $\triangle ABC \cong \triangle JKL \cong \triangle RST$, then \overline{BC} must be congruent to

(1) \overline{JL}


(3) \overline{ST}

(2) \overline{JK}

(4) \overline{RS}

Question 2.

In the diagram of $\triangle ABC$ below, \overline{AB} is extended to point D.

If $m\angle CAB = x + 40$, $m\angle ACB = 3x + 10$, and $m\angle CBD = 6x$, what is $m\angle CAB$?

(1) 13

(3) 53

(2) 25

(4) 65

Question 3.

The bases of a right triangular prism are $\triangle ABC$ and $\triangle DEF$. Angles A and D are right angles, AB = 6, AC = 8, and AD = 12. What is the length of edge \overline{BE} ?

(1) 10


(3) 14

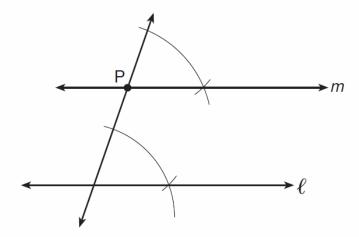
(2) 12

(4) 16

Question 4.

What is the equation of circle O shown in the diagram below?

(1)
$$(x + 4)^2 + (y - 1)^2 = 3$$


(2)
$$(x-4)^2 + (y+1)^2 = 3$$

(3)
$$(x + 4)^2 + (y - 1)^2 = 9$$

$$(4) (x - 4)^2 + (y + 1)^2 = 9$$

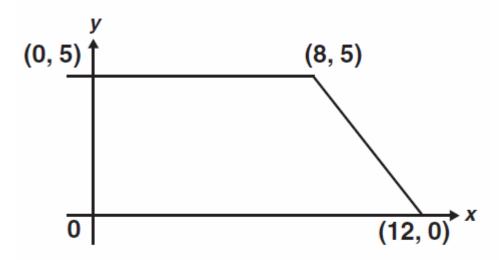
Question 5.

The diagram below shows the construction of line m, parallel to line ℓ , through point P.

Which theorem was used to justify this construction?

- (1) If two lines are cut by a transversal and the alternate interior angles are congruent, the lines are parallel.
- (2) If two lines are cut by a transversal and the interior angles on the same side are supplementary, the lines are parallel.
- (3) If two lines are perpendicular to the same line, they are parallel.
- (4) If two lines are cut by a transversal and the corresponding angles are congruent, they are parallel.

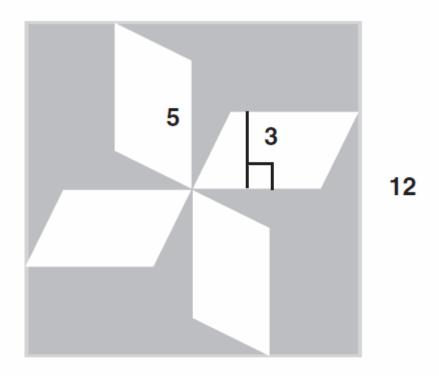
Question 6.


A student wrote the following equations:

$$3y + 6 = 2x$$
$$2y - 3x = 6$$

The lines represented by these equations are

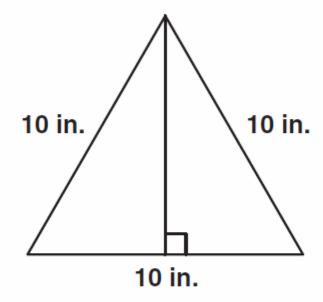
- (1) parallel
- (2) the same line
- (3) perpendicular
- (4) intersecting, but not perpendicular


What is the area, in square units, of the trapezoid shown below?

- **A** 37.5
- **B** 42.5
- **C** 50
- **D** 100

Question 8.

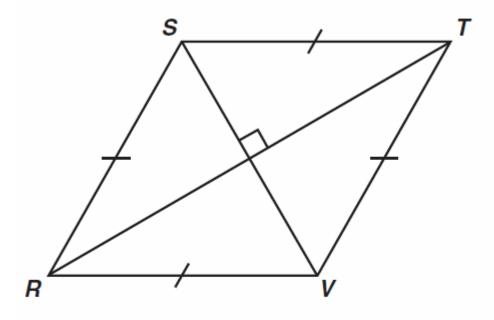
The figure below is a square with four congruent parallelograms inside.



What is the area, in square units, of the shaded portion?

- **A** 60
- **B** 84
- C 114
- **D** 129

Question 9.


What is the area, in square inches (in.), of the triangle below?

- **A** 25
- **B** $25\sqrt{3}$
- **C** 50
- **D** $50\sqrt{3}$

Question 10.

What is the area, in square centimeters, of rhombus RSTV if RT = 16 cm and SV = 12 cm?

A 40

B 48

C 96

D 192

High School Mathematics Assessment Reference Sheet

1 inch = 2.54 centimeters 1 meter = 39.37 inches

1 meter = 59.37 inches 1 mile = 5280 feet 1 mile = 1760 yards 1 mile = 1.609 kilometers 1 kilometer = 0.62 mile

1 pound = 16 ounces 1 pound = 0.454 kilograms 1 kilogram = 2.2 pounds

1 kilogram = 2.2 pounds 1 ton = 2000 pounds 1 cup = 8 fluid ounces

1 pint = 2 cups

1 quart = 2 pints 1 gallon = 4 quarts 1 gallon = 3.785 liters

1 liter = 0.264 gallons

1 liter = 1000 cubic centimeters

Triangle	$A = \frac{1}{2}bh$
Parallelogram	A = bh
Circle	$A = \pi r^2$
Circle	$C = \pi d$ or $C = 2\pi r$
General Prisms	V = Bh
Cylinder	$V = \pi r^2 h$
Sphere	$V = \frac{4}{3}\pi r^3$
Cone	$V = \frac{1}{3}\pi r^2 h$
Pyramid	$V = \frac{1}{3}Bh$

Quadratic Formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Arithmetic Sequence	$a_n = a_1 + (n-1)d$
Geometric Sequence	$a_n = a_1 r^{n-1}$
Geometric Series	$S_n = rac{a_1 - a_1 r^n}{1 - r}$ where $r eq 1$
Radians	1 radian = $\frac{180}{\pi}$ degrees
Degrees	1 degree = $\frac{\pi}{180}$ radians

