Geometry Daily Quiz 11152019

Question 1.

Which set of numbers could represent the lengths of the sides of a right triangle?

(1) $\{2, 3, 4\}$

(3) {7, 7, 12}

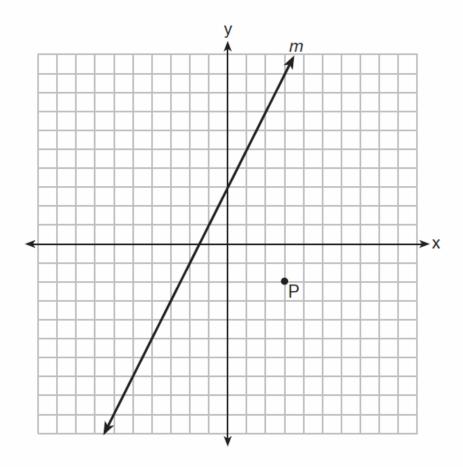
(2) {5, 9, 13}

(4) $\{8, 15, 17\}$

Question 2.

In quadrilateral ABCD, the diagonals bisect its angles. If the diagonals are not congruent, quadrilateral ABCD must be a

(1) square


(3) rhombus

(2) rectangle

(4) trapezoid

Question 3.

Line m and point P are shown in the graph below.

Which equation represents the line passing through ${\cal P}$ and parallel to line m?

$$(1) \ y - 3 = 2(x + 2)$$

(1)
$$y - 3 = 2(x + 2)$$
 (3) $y - 3 = -\frac{1}{2}(x + 2)$

$$(2) \ y + 2 = 2(x - 3)$$

(2)
$$y + 2 = 2(x - 3)$$
 (4) $y + 2 = -\frac{1}{2}(x - 3)$

Question 4.

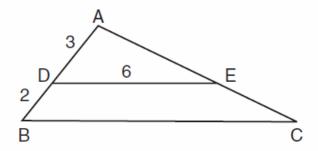
Which compound statement is true?

- (1) A square has four sides or a hexagon has eight sides.
- (2) A square has four sides and a hexagon has eight sides.
- (3) If a square has four sides, then a hexagon has eight sides.
- (4) A square has four sides if and only if a hexagon has eight sides.

Question 5.

In $\triangle CAT$, $m\angle C=65$, $m\angle A=40$, and B is a point on side \overline{CA} , such that $\overline{TB}\perp\overline{CA}$. Which line segment is shortest?

(1) \overline{CT}


(3) \overline{TB}

(2) \overline{BC}

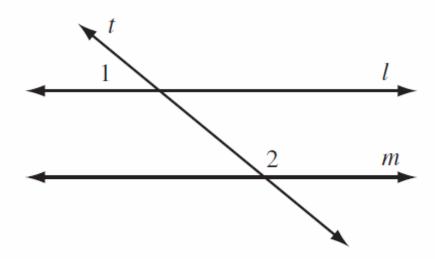
(4) \overline{AT}

Question 6.

In the diagram of $\triangle ABC$ below, $\overline{DE} \parallel \overline{BC}$, AD = 3, DB = 2, and DE = 6.

What is the length of \overline{BC} ?

(1) 12

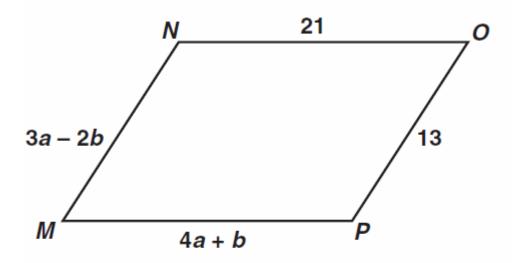

(3) 8

(2) 10

(4) 4

Question 7.

In the accompanying diagram, parallel lines l and m are cut by transversal t.



Which statement about angles 1 and 2 *must* be true?

- \mathbf{A} $\angle 1 \cong \angle 2$.
- **B** $\angle 1$ is the complement of $\angle 2$.
- C $\angle 1$ is the supplement of $\angle 2$.
- **D** $\angle 1$ and $\angle 2$ are right angles.

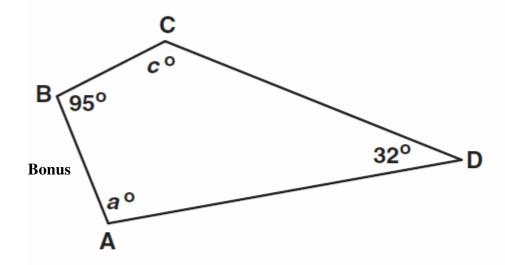
Question 8.

What values of a and b make quadrilateral MNOP a parallelogram?

A
$$a = 1, b = 5$$

B
$$a = 5, b = 1$$

$$C \quad a = \frac{11}{7}, b = \frac{34}{7}$$


D
$$a = \frac{34}{7}, b = \frac{11}{7}$$

Quadrilateral *ABCD* is a parallelogram. If adjacent angles are congruent, which statement must be true?

- **A** Quadrilateral *ABCD* is a square.
- **B** Quadrilateral *ABCD* is a rhombus.
- **C** Quadrilateral *ABCD* is a rectangle.
- **D** Quadrilateral *ABCD* is an isosceles trapezoid.

Question 10.

For the quadrilateral shown below, what is $m\angle a + m\angle c$?

- **A** 53°
- **B** 137°
- **C** 180°
- **D** 233°

High School Mathematics Assessment Reference Sheet

 1 inch = 2.54 centimeters
 1 kilometer = 0.62 mile
 1 cup = 8 fluid ounces

 1 meter = 39.37 inches
 1 pound = 16 ounces
 1 pint = 2 cups

 1 mile = 5280 feet
 1 pound = 0.454 kilograms
 1 quart = 2 pints

 1 mile = 1760 yards
 1 kilogram = 2.2 pounds
 1 gallon = 4 quarts

 1 mile = 1.609 kilometers
 1 ton = 2000 pounds
 1 gallon = 3.785 liters

1 liter = 0.264 gallons 1 liter = 1000 cubic centimeters

	4
Triangle	$A = \frac{1}{2}bh$
Parallelogram	A = bh
Circle	$A = \pi r^2$
Circle	$C = \pi d$ or $C = 2\pi r$
General Prisms	V = Bh
Cylinder	$V = \pi r^2 h$
Sphere	$V = \frac{4}{3}\pi r^3$
Cone	$V = \frac{1}{3}\pi r^2 h$
Pyramid	$V = \frac{1}{3}Bh$

Quadratic Formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Arithmetic Sequence	$a_n = a_1 + (n-1)d$
Geometric Sequence	$a_n = a_1 r^{n-1}$
Geometric Series	$S_n = \frac{a_1 - a_1 r^n}{1 - r}$ where $r \neq 1$
Radians	1 radian = $\frac{180}{\pi}$ degrees
Degrees	1 degree = $\frac{\pi}{180}$ radians

