Geometry Daily Quiz 11142019

Question 1.

Circle O is represented by the equation $(x + 3)^2 + (y - 5)^2 = 48$. The coordinates of the center and the length of the radius of circle O are

- (1) (-3,5) and $4\sqrt{3}$
- (3) (3,-5) and $4\sqrt{3}$
- (2) (-3,5) and 24
- (4) (3,-5) and 24

Question 2.

What is the slope of a line perpendicular to the line whose equation is 3x - 7y + 14 = 0?

 $(1) \frac{3}{7}$

(3) 3

 $(2) -\frac{7}{3}$

 $(4) -\frac{1}{3}$

Question 3.

Line segment AB has endpoint A located at the origin. Line segment AB is longest when the coordinates of B are

(1) (3,7)

(3) (-6,4)

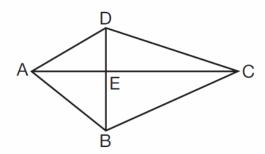
(2) (2,-8)

(4) (-5,-5)

Question 4.

In $\triangle FGH$, m $\angle F = \text{m} \angle H$, GF = x + 40, HF = 3x - 20, and GH = 2x + 20. The length of \overline{GH} is

(1) 20


(3) 60

(2) 40

(4) 80

Question 5.

In the diagram below of quadrilateral ABCD, diagonals \overline{AEC} and \overline{BED} are perpendicular at E.

Which statement is always true based on the given information?


$$(1) \ \overline{DE} \cong \overline{EB}$$

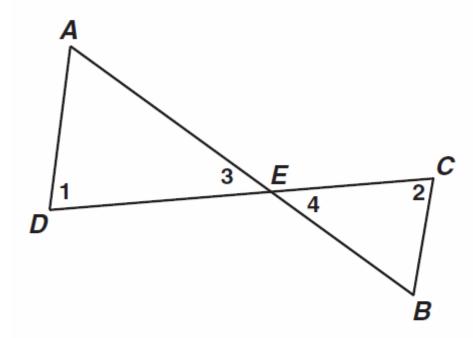
$$(3) \ \angle DAC \cong \angle BAC$$

$$(2) \ \overline{AD} \cong \overline{AB}$$

$$(4) \ \angle AED \cong \angle CED$$

Which of the following statements must be true if $\triangle GHI \sim \triangle JKL$?

- **A** The two triangles must be scalene.
- **B** The two triangles must have exactly one acute angle.
- C At least one of the sides of the two triangles must be parallel.
- **D** The corresponding sides of the two triangles must be proportional.


Which method listed below could *not* be used to prove that two triangles are congruent?

- A Prove all three sets of corresponding sides congruent.
- **B** Prove all three sets of corresponding angles congruent.
- C Prove that two sides and an included angle of one triangle are congruent to two sides and an included angle of the other triangle.
- **D** Prove that two angles and an included side of one triangle are congruent to two angles and an included side of the other triangle.

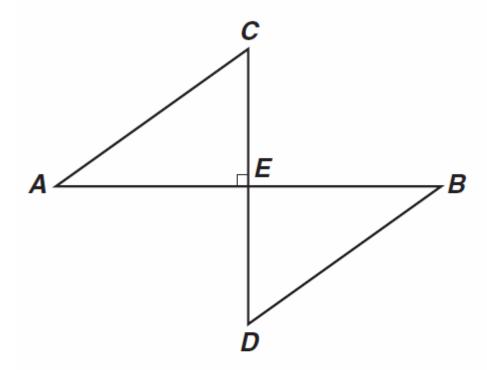
Question 8.

Given: \overline{AB} and \overline{CD} intersect at point E;

$$\angle 1 \cong \angle 2$$

Which theorem or postulate can be used to prove $\triangle AED \sim \triangle BEC$?

A AA

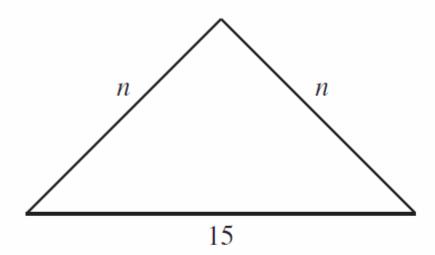

B SSS

C ASA

D SAS

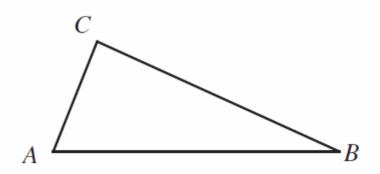
Question 9.

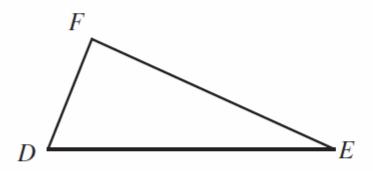
Given: *E* is the midpoint of \overline{CD} ; $\angle C \cong \angle D$



Which of the following statements *must* be true?

- $\mathbf{A} \quad \angle A \cong \angle D$
- **B** $\angle B \cong \angle C$
- $\mathbf{C} \qquad \overline{CE} \cong \overline{BE}$
- $\mathbf{D} \quad \overline{AC} \cong \overline{BD}$


CSC10078


In the figure below, n is a whole number. What is the *smallest* possible value for n?

- **A** 1
- **B** 7
- **C** 8
- **D** 14

In the figure below, $\overline{AC} \cong \overline{DF}$ and $\angle A \cong \angle D$.

Which additional information would be enough to prove that $\triangle ABC \cong \triangle DEF$?

$$\mathbf{A} \qquad \overline{AB} \cong \overline{DE}$$

$$\mathbf{B} \qquad \overline{AB} \cong \overline{BC}$$

$$\mathbf{C}$$
 $\overline{BC} \cong \overline{EF}$

$$\mathbf{D} \quad \overline{BC} \cong \overline{DE}$$

High School Mathematics Assessment Reference Sheet

1 inch = 2.54 centimeters 1 kilometer = 0.62 mile 1 cup = 8 fluid ounces 1 meter = 39.37 inches 1 pound = 16 ounces 1 pint = 2 cups 1 quart = 2 pints 1 mile = 5280 feet 1 pound = 0.454 kilograms 1 mile = 1760 yards 1 kilogram = 2.2 pounds 1 gallon = 4 quarts 1 ton = 2000 pounds 1 mile = 1.609 kilometers 1 gallon = 3.785 liters 1 liter = 0.264 gallons

1 liter = 1000 cubic centimeters

Triangle	$A = \frac{1}{2}bh$		
Parallelogram	A = bh		
Circle	$A = \pi r^2$		
Circle	$C = \pi d$ or $C = 2\pi r$		
General Prisms	V = Bh		
Cylinder	$V = \pi r^2 h$		
Sphere	$V = \frac{4}{3}\pi r^3$		
Cone	$V = \frac{1}{3}\pi r^2 h$		
Pyramid	$V = \frac{1}{3}Bh$		

Quadratic Formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Arithmetic Sequence	$a_n = a_1 + (n-1)d$
Geometric Sequence	$a_n = a_1 r^{n-1}$
Geometric Series	$S_n = \frac{a_1 - a_1 r^n}{1 - r}$ where $r \neq 1$
Radians	1 radian = $\frac{180}{\pi}$ degrees
Degrees	1 degree = $\frac{\pi}{180}$ radians

