
Geometry Daily Quiz 11062019

Question 1.

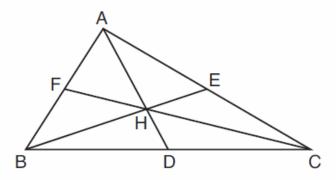
In the diagram below of circle O with radius \overline{OA} , tangent \overline{CA} and secant \overline{COB} are drawn.

(Not drawn to scale)

If AC = 20 cm and OA = 7 cm, what is the length of \overline{OC} , to the nearest centimeter?

(1) 19

(3) 21


(2) 20

(4) 27

Question 2.

Do you remember this Fun Fact? The Centroid of a Triangle is the centre of the triangle that can be calculated as the point of intersection of all the three medians of a triangle. The median is a line drawn from the midpoint of a side to the opposite vertex. The centroid separates all the medians of the triangle in the ratio 2:1.

In the diagram below of $\triangle ABC$, point H is the intersection of the three medians.

If \overline{DH} measures 2.4 centimeters, what is the length, in centimeters, of \overline{AD} ?

(1) 3.6

(3) 7.2

(2) 4.8

(4) 9.6

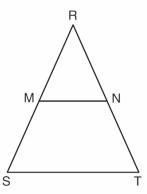
Question 3.

Which set of numbers could be the lengths of the sides of an isosceles triangle?

(1) $\{1, 1, 2\}$

(3) $\{3, 4, 5\}$

(2) $\{3, 3, 5\}$


(4) $\{4, 4, 9\}$

Question 4.

A paper container in the shape of a right circular cone has a radius of 3 inches and a height of 8 inches. Determine and state the number of cubic inches in the volume of the cone, in terms of π .

Question 5.

In isosceles triangle RST shown below, $\overline{RS}\cong \overline{RT}$, M and N are midpoints of \overline{RS} and \overline{RT} , respectively, and \overline{MN} is drawn. If MN=3.5 and the perimeter of $\triangle RST$ is 25, determine and state the length of \overline{NT} .

Question 6.

Write an equation of the line that is perpendicular to the line whose equation is 2y = 3x + 12 and that passes through the origin.

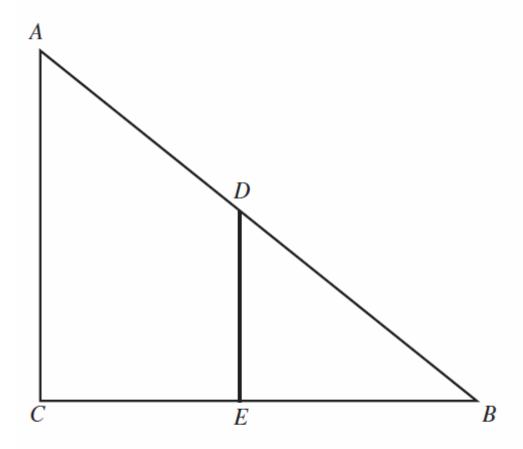
Question 7.

Rectangle KLMN has vertices K(0,4), L(4,2), M(1,-4), and N(-3,-2). Determine and state the coordinates of the point of intersection of the diagonals.

Question 8.

If \overline{AB} is defined by the endpoints A(4,2) and B(8,6), write an equation of the line that is the perpendicular bisector of \overline{AB} .

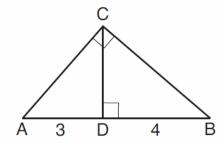
Question 9.


Theorem: A triangle has at most one obtuse angle.

Eduardo is proving the theorem above by contradiction. He began by assuming that in $\triangle ABC$, $\angle A$ and $\angle B$ are both obtuse. Which theorem will Eduardo use to reach a contradiction?

- A If two angles of a triangle are equal, the sides opposite the angles are equal.
- **B** If two supplementary angles are equal, the angles each measure 90°.
- C The largest angle in a triangle is opposite the longest side.
- **D** The sum of the measures of the angles of a triangle is 180°.

Question 10.


Which of the following facts would be sufficient to prove that triangles *ABC* and *DBE* are similar?

- **A** \overline{CE} and \overline{BE} are congruent.
- **B** $\angle ACE$ is a right angle.
- \overline{C} and \overline{DE} are parallel.
- **D** $\angle A$ and $\angle B$ are congruent.

Bonus Question. Show how you got your answer.

In the diagram below of right triangle $ABC,\ \overline{CD}$ is the altitude to hypotenuse \overline{AB} , AD = 3, and DB = 4.

What is the length of \overline{CB} ?

(1)
$$2\sqrt{3}$$

(3)
$$2\sqrt{7}$$

(2)
$$\sqrt{21}$$

$$(3) \quad 2\sqrt{7}$$

$$(4) \quad 4\sqrt{3}$$

High School Mathematics Assessment Reference Sheet

1 inch = 2.54 centimeters 1 kilometer = 0.62 mile 1 cup = 8 fluid ounces 1 meter = 39.37 inches 1 pound = 16 ounces 1 pint = 2 cups 1 quart = 2 pints 1 mile = 5280 feet 1 pound = 0.454 kilograms 1 mile = 1760 yards 1 kilogram = 2.2 pounds 1 gallon = 4 quarts 1 ton = 2000 pounds 1 mile = 1.609 kilometers 1 gallon = 3.785 liters 1 liter = 0.264 gallons

1 liter = 1000 cubic centimeters

Triangle	$A = \frac{1}{2}bh$
Parallelogram	A = bh
Circle	$A = \pi r^2$
Circle	$C = \pi d$ or $C = 2\pi r$
General Prisms	V = Bh
Cylinder	$V = \pi r^2 h$
Sphere	$V = \frac{4}{3}\pi r^3$
Cone	$V = \frac{1}{3}\pi r^2 h$
Pyramid	$V = \frac{1}{3}Bh$

Quadratic Formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Arithmetic Sequence	$a_n = a_1 + (n-1)d$
Geometric Sequence	$a_n = a_1 r^{n-1}$
Geometric Series	$S_n = \frac{a_1 - a_1 r^n}{1 - r}$ where $r \neq 1$
Radians	1 radian = $\frac{180}{\pi}$ degrees
Degrees	1 degree = $\frac{\pi}{180}$ radians

