
Geometry **Daily Quiz 11012019**

Question 1.

In $\triangle ABC$ shown below with \overline{ADC} , \overline{AEB} , \overline{CFE} , and \overline{BFD} , $\triangle ACE \cong \triangle ABD$.

Which statement must be true?

(1)
$$\angle ACF \cong \angle BCF$$

$$(3) \ \angle BCD \cong \angle ABD$$

(2)
$$\angle DAE \cong \angle DFE$$

$$(4) \ \angle AEF \cong \angle ADF$$

(Google is your best friend.)

Question 2.

In a circle whose equation is $(x - 1)^2 + (y + 3)^2 = 9$, the coordinates of the center and length of its radius are

(1)
$$(1,-3)$$
 and $r = 81$ (3) $(1,-3)$ and $r = 3$

(3)
$$(1,-3)$$
 and $r=3$

(2)
$$(-1,3)$$
 and $r = 81$ (4) $(-1,3)$ and $r = 3$

$$(4)$$
 $(-1,3)$ and $r = 3$

Question 3.

What are the coordinates of P', the image of point P(x,y) after translation $T_{4,4}$?

- (1) (x 4, y 4)
- (3) (4x, 4y)
- $(2) \ (x + 4, y + 4)$
- (4) (4,4)

Question 4.

The statement "x > 5 or x < 3" is *false* when x is equal to

(1) 1

(3) 7

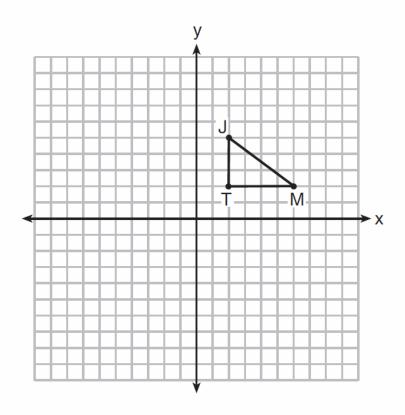
(2) 2

(4) 4

Question 5.

What is an equation of the line that passes through the point (-2,1) and is parallel to the line whose equation is 4x - 2y = 8?

$$(1) \ \ y = \frac{1}{2}x + 2$$


(3)
$$y = 2x + 5$$

$$(2) \ \ y = \frac{1}{2}x - 2$$

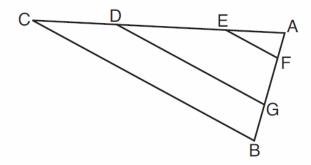
(4)
$$y = 2x - 5$$

Question 6.

Triangle JTM is shown on the graph below.

Which transformation would result in an image that is not congruent to $\triangle JTM$?

(1)
$$r_{y=x}$$


(3)
$$T_{0,-3}$$

(2)
$$R_{90^{\circ}}$$

$$(4) \ D_2$$

Question 7.

In the diagram below of $\triangle ABC$, with \overline{CDEA} and \overline{BGFA} , $\overline{EF} \parallel \overline{DG} \parallel \overline{CB}$.

Which statement is false?

$$(1) \quad \frac{AC}{AD} = \frac{AB}{AG}$$

$$(3) \quad \frac{AE}{AD} = \frac{EC}{AC}$$

$$(2) \quad \frac{AE}{AF} = \frac{AC}{AB}$$

$$(4) \quad \frac{BG}{BA} = \frac{CD}{CA}$$

Question 8.

In $\triangle JKL$, $\overline{JL} \cong \overline{KL}$. If $m\angle J = 58$, then $m\angle L$ is

(1) 61

(3) 116

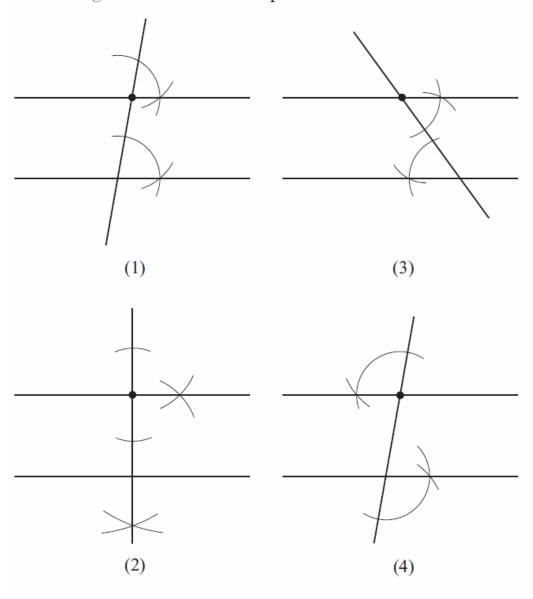
(2) 64

(4) 122

Question 9.

The corresponding medians of two similar triangles are 8 and 20. If the perimeter of the larger triangle is 45, what is the perimeter of the *smaller* triangle?

(1) 14

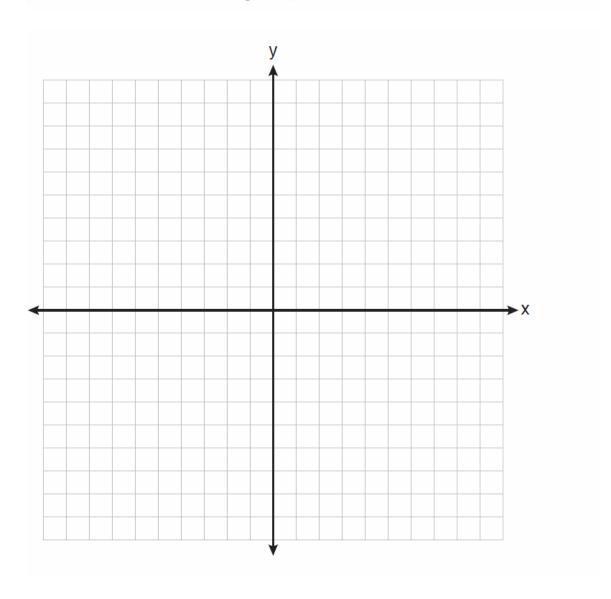

(3) 33

(2) 18

(4) 37

Question 10.

Which construction of parallel lines is justified by the theorem "If two lines are cut by a transversal to form congruent alternate interior angles, then the lines are parallel"?


Bonus Question.

Triangle HKL has vertices H(-7,2), K(3,-4), and L(5,4). The midpoint of \overline{HL} is M and the midpoint of \overline{LK} is N.

Determine and state the coordinates of points M and N.

Justify the statement: \overline{MN} is parallel to \overline{HK} .

[The use of the set of axes below is optional.]

Fun Fact: The **Centroid** of a Triangle is the centre of the triangle that can be calculated as the point of intersection of all the three medians of a triangle. The median is a line drawn from the midpoint of a side to the opposite vertex. The **centroid** separates all the medians of the triangle in the ratio 2:1.

High School Mathematics Assessment Reference Sheet

1 inch = 2.54 centimeters

1 meter = 39.37 inches

1 mile = 5280 feet

1 mile = 1760 yards 1 mile = 1.609 kilometers 1 kilometer = 0.62 mile

1 pound = 16 ounces

1 pound = 0.454 kilograms

1 kilogram = 2.2 pounds 1 ton = 2000 pounds 1 cup = 8 fluid ounces

1 pint = 2 cups

1 quart = 2 pints

1 gallon = 4 quarts

1 gallon = 3.785 liters

1 liter = 0.264 gallons

1 liter = 1000 cubic centimeters

Triangle	$A = \frac{1}{2}bh$
Parallelogram	A = bh
Circle	$A = \pi r^2$
Circle	$C = \pi d$ or $C = 2\pi r$
General Prisms	V = Bh
Cylinder	$V = \pi r^2 h$
Sphere	$V = \frac{4}{3}\pi r^3$
Cone	$V = \frac{1}{3}\pi r^2 h$
Pyramid	$V = \frac{1}{3}Bh$

Quadratic Formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Arithmetic Sequence	$a_n = a_1 + (n-1)d$
Geometric Sequence	$a_n = a_1 r^{n-1}$
Geometric Series	$S_n = rac{a_1 - a_1 r^n}{1 - r}$ where $r eq 1$
Radians	1 radian = $\frac{180}{\pi}$ degrees
Degrees	$1 \text{ degree} = \frac{\pi}{180} \text{ radians}$

