Geometry **Daily Quiz 10252019**

Question 1.

Which quadrilateral has diagonals that always bisect its angles and also bisect each other?

(1) rhombus

(3) parallelogram

(2) rectangle

(4) isosceles trapezoid

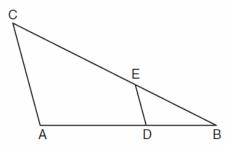
Question 2.

When $\triangle ABC$ is dilated by a scale factor of 2, its image is $\triangle A'B'C'$. Which statement is true?

- (1) $\overline{AC} \cong \overline{A'C'}$
- (2) $\angle A \cong \angle A'$
- (3) perimeter of $\triangle ABC$ = perimeter of $\triangle A'B'C'$
- (4) $2(\text{area of }\triangle ABC) = \text{area of }\triangle A'B'C'$

Question 3.

What is the slope of a line that is perpendicular to the line whose equation is 3x + 5y = 4?


 $(1) -\frac{3}{5}$

(3) $-\frac{5}{3}$ (4) $\frac{5}{3}$

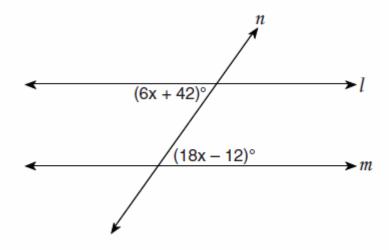
 $(2) \frac{3}{5}$

Question 4.

In the diagram below of $\triangle ABC$, D is a point on \overline{AB} , E is a point on \overline{BC} , $\overline{AC} \parallel \overline{DE}$, CE = 25 inches, AD = 18 inches, and DB = 12 inches. Find, to the nearest tenth of an inch, the length of \overline{EB} .

Question 5.

In circle O, diameter \overline{RS} has endpoints R(3a,2b-1) and S(a-6,4b+5). Find the coordinates of point O, in terms of a and b. Express your answer in simplest form.


Question 6.

Solve the following system of equations graphically.

$$2x^2 - 4x = y + 1$$
$$x + y = 1$$

Question 7.

Line n intersects lines l and m, forming the angles shown in the diagram below.

Which value of x would prove $l \parallel m$?

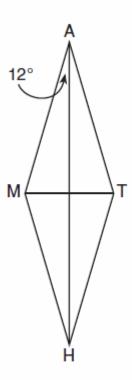
(1) 2.5

(3) 6.25

(2) 4.5

(4) 8.75

Question 8.


A circle has the equation $(x-2)^2 + (y+3)^2 = 36$. What are the coordinates of its center and the length of its radius?

(1) (-2,3) and 6

- (3) (-2,3) and 36
- (2) (2,-3) and 6
- (4) (2,-3) and 36

Question 9.

In the diagram below, MATH is a rhombus with diagonals \overline{AH} and \overline{MT} .

If $m \angle HAM = 12$, what is $m \angle AMT$?

(1) 12

(3) 84

(2) 78

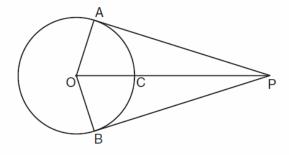
(4) 156

Question 10.

A line segment has endpoints (4,7) and (1,11). What is the length of the segment?

(1) 5

(3) 16


(2) 7

(4) 25

Bonus Question.

In the diagram below, \overline{PA} and \overline{PB} are tangent to circle O, \overline{OA} and \overline{OB} are radii, and \overline{OP} intersects the circle at C.

Prove: $\angle AOP \cong \angle BOP$

High School Mathematics Assessment Reference Sheet

1 inch = 2.54 centimeters 1 kilometer = 0.62 mile 1 cup = 8 fluid ounces 1 meter = 39.37 inches 1 pound = 16 ounces 1 pint = 2 cups 1 quart = 2 pints 1 mile = 5280 feet 1 pound = 0.454 kilograms 1 mile = 1760 yards 1 kilogram = 2.2 pounds 1 gallon = 4 quarts 1 ton = 2000 pounds 1 mile = 1.609 kilometers 1 gallon = 3.785 liters 1 liter = 0.264 gallons

1 liter = 1000 cubic centimeters

Triangle	$A = \frac{1}{2}bh$
Parallelogram	A = bh
Circle	$A = \pi r^2$
Circle	$C = \pi d$ or $C = 2\pi r$
General Prisms	V = Bh
Cylinder	$V = \pi r^2 h$
Sphere	$V = \frac{4}{3}\pi r^3$
Cone	$V = \frac{1}{3}\pi r^2 h$
Pyramid	$V = \frac{1}{3}Bh$

Quadratic Formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Arithmetic Sequence	$a_n = a_1 + (n-1)d$
Geometric Sequence	$a_n = a_1 r^{n-1}$
Geometric Series	$S_n = \frac{a_1 - a_1 r^n}{1 - r}$ where $r \neq 1$
Radians	1 radian = $\frac{180}{\pi}$ degrees
Degrees	1 degree = $\frac{\pi}{180}$ radians

