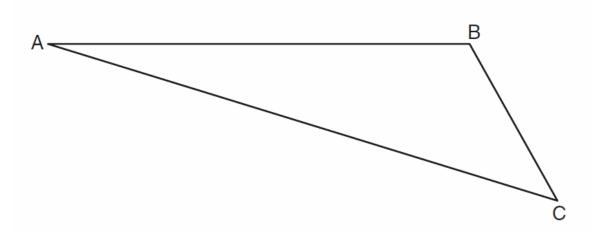
Geometry Weekly Homework 10112019


Question 1.

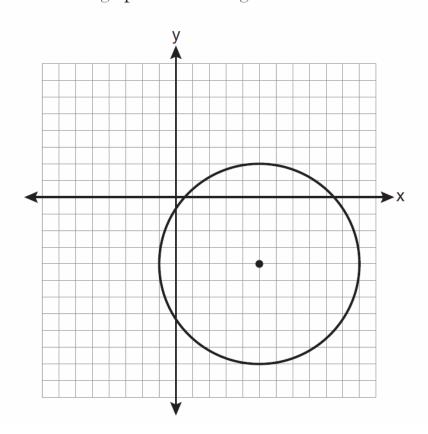
Given three distinct quadrilaterals, a square, a rectangle, and a rhombus, which quadrilaterals must have perpendicular diagonals?

- (1) the rhombus, only
- (2) the rectangle and the square
- (3) the rhombus and the square
- (4) the rectangle, the rhombus, and the square

Question 2.

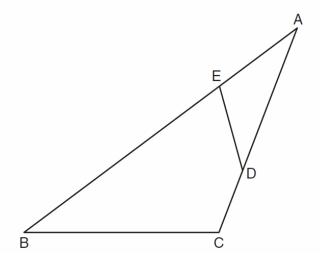
On the diagram of $\triangle ABC$ shown below, use a compass and straightedge to construct the perpendicular bisector of \overline{AC} . [Leave all construction marks.]

Question 3.

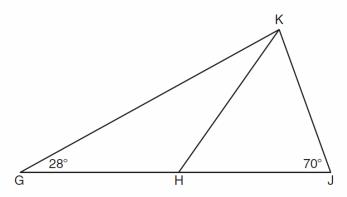

A sphere has a diameter of 18 meters. Find the volume of the sphere, in cubic meters, in terms of $\pi.$

Question 4.

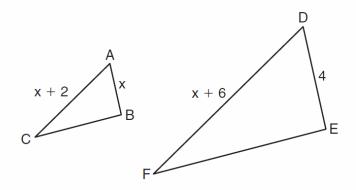
Find an equation of the line passing through the point (5,4) and parallel to the line whose equation is 2x + y = 3.


Question 5.

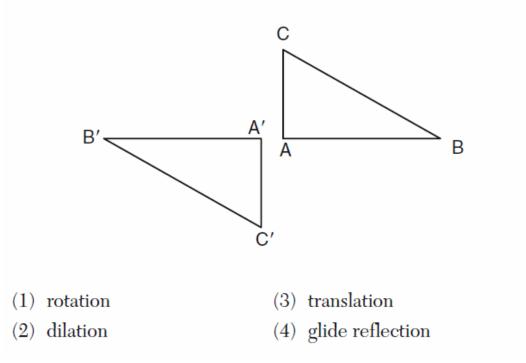
Write an equation of the circle graphed in the diagram below.


Question 6.

The diagram below shows $\triangle ABC$, with \overline{AEB} , \overline{ADC} , and $\angle ACB \cong \angle AED$. Prove that $\triangle ABC$ is similar to $\triangle ADE$.


Question 7.

In the diagram below of $\triangle GJK$, H is a point on \overline{GJ} , $\overline{HJ} \cong \overline{JK}$, $m \angle G = 28$, and $m \angle GJK = 70$. Determine whether $\triangle GHK$ is an isosceles triangle and justify your answer.


Question 8.

In the diagram below, $\triangle ABC \sim \triangle DEF$, DE = 4, AB = x, AC = x + 2, and DF = x + 6. Determine the length of \overline{AB} . [Only an algebraic solution can receive full credit.]

Question 9.

In the diagram below, under which transformation will $\triangle A'B'C'$ be the image of $\triangle ABC$?

Question 10.

The lateral faces of a regular pyramid are composed of

(1) squares

- (3) congruent right triangles
- (2) rectangles (4) congruent isosceles triangles

Question 11.

Point A is located at (4,-7). The point is reflected in the x-axis. Its image is located at

- $\begin{array}{cccc} (1) & (-4,7) \\ (2) & (-4,7) \\ \end{array} \tag{3} \quad (4,7) \\ (4) & (7,7) \\ \end{array}$
- (2) (-4,-7) (4) (7,-4)